Назначение контактной системы зажигания 3. Системы зажигания автомобиля

Введение .............................................................................................................................. 3

Контактная система зажигания .......................................................................... 7

Стартер ...................................................................................................................... 15

Основные неисправности приборов системы батарейного

зажигания и его техническое обслуживание. ............................................ 18

Ремонт и техническое обслуживание стартера ......................................... 21

1 - датчик-распределитель; 2 - свеча зажигания; 3 - элект­ронный коммутатор; 4 - аккумуляторная батарея; 5 - генера тор; 6 - катушка зажигания; 7 и 11 - провода соответственно низкого и высокого напряжения; 8 - монтажный блок; 9 - вы­ключатель зажигания; 10 - штекерный разъем датчика-распре­делителя; +Б - плюсовая клемма катушки зажигания

Электронно-механическое устройство датчика-распреде­лителя при включенном зажигании и работающем двигате­ле выдает импульсы напряжения на электронный коммута­тор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент преры­вания импульса тока в первичной обмотке во вторичной об­мотке индуктируется ток высокого напряжения. Ток высо­кого напряжения от катушки зажигания по проводу подает­ся на центральную клемму крышки распределителя и далее через угольный контакт, токоразносную пластину ротора, боковые клеммы подается на свечи зажигания и искровым разрядом воспламеняет рабочую смесь в цилиндрах двига­теля.


Преимущества бесконтактной системы зажигания:

Повышение надежности ввиду отсутствия подвижных контактов и необходимости систематической их зачи­стки и регулировки зазоров;

Отсутствие влияния вибрации и биения ротора-распре­делителя на равномерность момента искрообразования;

Повышение надежности пуска и работы двигателя при разгонах автомобиля благодаря более высокой энер­гии электрического разряда, обеспечивающего надеж­ное воспламенение рабочей смеси в цилиндрах двига­теля независимо от частоты вращения коленчатого вала;

Упрощение технического обслуживания системы зажи­гания.

В данной работе рассматривается система пуска двигателя, в которую входит: контактная система зажигания, стартер и их техническое обслуживание.

Контактная система зажигания.

Сжатая рабочая смесь в цилиндре двигателя зажигается электрическим разрядом - искрой, образующейся между электродами свечи зажигания.

Для образования электрического разряда в условиях сжа­той рабочей смеси необходимо напряжение не менее 12- 16 кВ.

Преобразование тока низкого напряжения в ток высоко­го напряжения и распределение его по цилиндрам двигателя осуществляется приборами батарейного зажигания. Систе­ма батарейного зажигания состоит из источников тока низ­кого напряжения, катушки зажигания, прерывателя распре­делителя, конденсатора, свечей зажигания, включателя за­жигания и проводов низкого и высокого напряжений (рис. 4). В системе батарейного зажигания имеется две цепи - низкого и высокого напряжения.


Рис. 5. Катушка зажигания


0,8 мм, картонной трубки, вторичной обмотки из 19...25 тыс. витков тонкого провода диаметром 0,1 мм, железного кор­пуса с магнитопроводами, карболитовой крышки, клемм и добавочного резистора.

Рис. 7. Конденсатор

Вторичная обмотка расположена под первичной и отделена от нее слоем изоляции. Концы пер­вичной обмотки выведены на клеммы карболитовой крыш­ки. Один конец вторичной обмотки соединен с первичной обмоткой, а второй выведен на центральную клемму карбо­литовой крышки.

Сердечник изготовляют из отдельных изолированных друг от друга полосок трансформаторной стали, чтобы умень­шить образование вихревых токов. Нижний конец сердечни­ка установлен в фарфоровый изолятор. Внутри катушка за­жигания заполнена трансформаторным маслом.

Добавочный резистор состоит из спирали, керамических гнезд и двух шин. Сопротивление колеблется от 0,7 до 20 Ом. Один конец резистора соединен шиной с клеммой ВК, а дру­гой - с ВКБ.

При малой частоте вращения коленчатого вала двигате­ля контакты прерывателя продолжительное время находят­ся в замкнутом состоянии, сила тока в первичной цепи воз­растает, резистор нагревается, увеличивается сопротивление в цепи, в катушку зажигания поступает ток небольшой силы, этим она предохраняется от перегрева.

Когда частота вращения коленчатого вала двигателя увеличивается, время сомкнутого состояния контактов умень­шается, сила тока в первичной цепи уменьшается, нагрев и сопротивление добавочного резистора уменьшаются, что препятствует понижению напряжения во вторичной цепи.

При включении стартера резистор закорачивается и пуск двигателя облегчается.

Прерыватель-распределитель . Образование тока высо­кого напряжения и распределение его по цилиндрам двига­теля для своевременного воспламенения рабочей смеси дол­жно соответствовать порядку работы цилиндров.

Чтобы индуктировать ток высокого напряжения во вто­ричной обмотке катушки зажигания, необходимо периоди­чески размыкать первичную цепь батарейного зажигания, что

и выполняет прерыватель. Для распределения тока высоко­го напряжения по цилиндрам соответственно порядку рабо­ты двигателя служит распределитель. Оба эти прибора объе­динены в один - прерыватель-распределитель.

Прерыватель (рис. 6) установлен на двигателе и при­водится в действие от распределительного вала. Основными частями прерывателя являются корпус, приводной вал. Под­вижный диск (на котором размещены изолированный рыча­жок с контактом и неподвижная стойка с контактом), непод­вижный диск, центробежный и вакуумный регуляторы опе­режения, октан-корректор и кулачок с выступами по числу цилиндров. Кулачок соединен с приводным валиком через центробежный регулятор. Контакты прерывателя наплавле­ны тугоплавким металлом - вольфрамом. Рычажок преры­вателя закреплен на диске шарнирно и своим контактом при­жимается к неподвижному контакту пружиной. Вращающий­ся приводной валик кулачками нажимает на текстолитовый выступ рычажка прерывателя и за один оборот разомкнет, а пружина сомкнет контакты столько раз, сколько имеется выступов на кулачке.

Размыкание первичной цепи катушки зажигания вызы­вает исчезновение магнитного потока, пересекающего не только витки вторичной обмотки, а и первичной, вследствие чего в них индуктируется ток самоиндукции напряжением 200...300 В. Этот ток, замедляя исчезновение тока в первич­ной цепи, приводит к уменьшению ЭДС во вторичной цепи. Ток самоиндукции также приводит к интенсивному искре­нию между контактами прерывателя и их разрушению. Что­бы предотвратить вредное воздействие ЭДС самоиндукции, применяют конденсатор. Конденсапюр включен параллель­но контактам прерывателя и в момент проявления ЭДС са­моиндукции заряжается, не допуская искрения на контак­тах. Кроме того, заряженный конденсатор, разряжаясь в обратном направлении, приводит к быстрому исчезновению тока в первичной цепи, а следовательно, и магнитного потока, благодаря чему напряжение во вторичной цепи повыша­ется. Конденсатор (рис. 7) состоит из лакированной бума­ги, на которую нанесен тонкий слой цинка и олова. Эта бу­мага является обкладкой конденсатора и свернута в рулон. К торцам рулона припаивается по одному гибкому провод­нику. Рулон обернут кабельной бумагой и пропитан маслом. Крепится конденсатор на корпусе снаружи или на подвиж­ном диске прерывателя.

Емкость конденсатора 0,17...0,2 мкФ. Конденсаторы из металлизированной бумаги обладают способностью самовос­станавливаться при пробое диэлектрика за счет заполнения отверстия маслом.

Большое влияние на работу батарейного зажигания ока­зывает зазор между контактами прерывателя. Нормальная работа батарейного зажигания будет при зазоре между кон­тактами прерывателя в пределах 0,35...0,45 мм.

Если зазор будет большим, то время замкнутого состо­яния контактов уменьшится и сила тока в первичной об­мотке катушки зажигания не успеет возрасти до требуемо­го значения и, как следствие этого, ЭДС вторичной цепи не будет достаточной. Кроме того, при большой частоте вращения коленчатого вала будут возникать перебои в ра­боте двигателя. При малом зазоре происходит сильное искрение между контактами, их обгорание и, как следствие, перебои на всех режимах работы двигателя. Зазор между контактами преры­вателя регулируют перемещением пластины со стойкой не­подвижного контакта и при помощи эксцентрика, отвернув предварительно стопорный винт (рис. 8). После регули­ровки стопорный винт нужно завернуть. Замеряют зазор при полностью разомкнутых контактах пластинчатым щупом.

DIV_ADBLOCK158">

Выбирают свечи зажигания для двигателя но их обозна­чениям, где указаны диаметр нарезной части, длина нижней части изолятора и материал

изолятора. Диаметр нарезной части обознается буквами М и А, где М соответствует диа­метру 18 мм и А - 14 мм. Цифрой обозначено калильное число. Длина резьбовой части обозначается буквами Н -11 мм, Д - 19 мм. Если буквы нет, то длина ввернутой части равна 12 мм. Буква «В» обозначает, что выступает ниж­няя часть изолятора, а «Т» - что герметизация изолятора выполнена термоцементом.

На двигателях автомобилей ГАЗ-53-12 и ЗИЛ-130 уста­навливают свечи А11, где буква А обозначает, что диаметр резьбы 14 мм, цифра 11 указывает калильное число, длина ввертной части корпуса - 12 мм. Большое влияние на рабо­ту свечи зажигания оказывает зазор между центральным и боковым электродами. Заводы рекомендуют зазоры 0,85... 1,00 мм. Уменьшение зазора против нормы вызывает обильное нагарообразовакие на электродах свечи зажигания и перебои в ее работе. При большем зазоре из-за повышения сопротивления ухудшаются условия искрообразования, от­чего также будут возникать перебои в работе двигателя. Ре­гулируют зазор подгибанием бокового электрода, а его раз­мер проверяют круглым щупом (рис. 9, в). Центральный электрод подгибать нельзя, так как разрушается керамичес­кая изоляция и свеча зажигания отказывает в работе.

Выключатель зажигания. Включение и выключение при­боров батарейного зажигания и других потребителей элект­рического тока осуществляется при помощи выключателя зажигания. Он состоит из двух частей: замка с ключом и электрического выключателя. Замок состоит из корпуса, цилиндра, пружины и поводка. В задней части корпуса зам­ка расположен выключатель, состоящий из контактной пла­стины с тремя выступами и панели с тремя контактными винтами.

В автомобилях ЗИЛ-130 и ГАЗ-53-12 ключ имеет три положения: первое (головка ключа расположена вертикаль­но) - зажигание выключено; второе (поворот ключа по ча­совой стрелке) - зажигание включено; третье (поворот ключа до отказа) - включены зажигание и стартер. Во всех случа­ях вместе с зажиганием включаются контрольно-измеритель­ные приборы.

Стартер.

Надежный пуск двигателя возможен при условии, если его коленчатый вал вращается с частотой 60...80 мин-1. Так как достижение такой частоты вращения при помощи рукоят­ки требует от водителя значительных усилий, то для облегче­ния работы водителя при пуске применяют электрический двигатель - стартер. Основными частями стартера (рис. 10), как и генератора, являются: корпус, якорь с обмотками и кол­лектором, две крышки, щетки и щеткодержатели.

В связи с потреблением стартером значительной силы тока (до 900 А) обмотки возбуждения и якоря выполнены из толстого провода. Четыре секции обмотки возбуждения включены последовательно обмоткам якоря двумя параллель­ными ветвями по две обмотки возбуждения в каждой. Щет­ки для лучшей проводимости сделаны меднографитными. Две щетки соединены с массой, а две - с обмотками возбуждения. Закрепленные в щеткодержателе щетки прижи­маются к коллектору пружинами. Для приведения во вра­щение коленчатого вала двигателя стартер оборудован при­водом, соединяющим вал стартера с зубчатым венцом махо­вика. Стартер включают при помощи выключателя зажига­ния. Работа стартера основана на взаимодействии магнит­ных полей обмоток возбуждения и якоря при прохождении по ним электрического тока.

Привод стартера должен обеспечивать соединение шес­терни стартера с венцом маховика только на время пуска двигателя. После пуска вал стартера должен немедленно отключаться, в противном случае венец маховика будет вра­щать якорь стартера с очень большой частотой и витки об­мотки якоря могут под действием центробежной силы вый­ти из пазов.

На изучаемых автомобилях применяют стартер с дистан­ционным управлением и электромагнитным включением (рис. 11). Привод состоит из реле включения, тягового реле с двумя обмотками - втягивающей и удерживающей, ры­чага с вилкой, кольца, пружины, шлицованной втулки и муф­ты. Втягивающая обмотка включена последовательно обмот­ке якоря, а удерживающая - параллельно.

Муфта свободного хода состоит (рис.10 б, в, г) из веду­щей обоймы, перемещающейся на шлицах вала, и ведомой обоймы с шестерней и четырьмя клинообразными выемка­ми. В клинообразных выемках помещены ролики с пружи­нами. Вращение ведущей обоймы вызывает перемещение роликов в узкую часть выемки и заклинивание ведомой обой­мы на ведущей. Если вращать по ходу ведомую обойму от­носительно ведущей, то ролики перемещаются в более широкую часть выемок и ведомая обойма будет свободно вра­щаться на ведущей.

Для включения стартера необходимо повернуть ключ зажигания вправо до отказа, при этом замыкается цепь об­мотки реле включения.

Созданное обмоткой реле магнитное поле приводит к замыканию контактов реле, в результате втягивающая и удерживающая обмотки тягового реле вклю­чаются в электрическую цепь. Под действием магнитного поля обмоток втягивается сердечник тягового реле и рыча­гом, связанным с ним, вводит в зацепление шестерню при­вода с венцом маховика. Одновременно медный контактный диск на другом конце стержня после включения шестерни замкнет силовую электрическую цепь стартера.

При повороте ключа зажигания в исходное положение цепь удерживающей обмотки размыкается, и сердечник тя­гового реле, а с ним рычаг и медный диск включения вер­нутся в исходное положение, стартер выключится.

На автомобиле КамАЗ в стартере применен привод с храповичным механизмом свободного хода. Привод перемеща­ется по шлицам вала якоря. Он состоит из корпуса, ведущей и ведомой полумуфт, пружины, втулки со спиральными шли­цами и механизма для центробежного разъединения полу­муфт. Стартер следует включать на время не более 5 с. При необходимости стартер можно включать повторно с интерва­лом не менее 0,5 мин. Этот промежуток времени необходим для восстановления работоспособности аккумуляторной бата­реи. Включать стартер можно не более 3 раз подряд.


Основные неисправности приборов системы батарейного зажигания и его техническое обслуживание.

Неисправности в работе приборов батарейного зажигания обнаруживают по перебоям в работе двигателя, затрудненному его пуску и резким хлопкам из глушителя.

Если перебои происходят в разных цилиндрах, то это свидетельствует о неисправности прерывателя-распределителя или катушки зажигания. Пе­ребои в одном цилиндре происходят в большинстве случаев из-за неисправ­ности свечи зажигания или провода высокого напряжения.

Нарушение работы прерывателя-распределителя может происходить из-за загрязнения или обгорания контактов, замыкания рычажка на массу, нарушения зазора между контактами прерывателя, неисправности конденса­тора, трещины в крышке или роторе распределителя, поломки угольной щет­ки. В катушке зажигания может быть повреждена изоляция обмоток.

Загрязненные контакты протирают ветошью, смоченной в бензине, а под­горевшие контакты зачищают надфилем или наждачной пластинкой. Нарушен­ный зазор восстанавливают регулировкой; замыкающий на массу рычажок протирают, осматривают и при повреждении изоляции проводку аккуратно изолируют. Крышку или ротор распределителя, имеющие трещины, необхо­димо заменить. Поломанную угольную щетку также заменяют, а загрязнен­ную очищают.

Неисправность конденсатора обнаруживают по сильному искрению между контактами прерывателя и резким хлопком в глушителе. Исправность кон­денсатора проверяют следующими способами:

провод высокого напряжения от катушки зажигания устанавливают на расстоянии 6-7 мм от любой металлической детали двигателя и после вклю­чения зажигания размыкают контакты - интенсивная искра между наконеч­ником провода и массой свидетельствует об исправности конденсатора;

отъединяют провод, конденсатора от клеммы и, включив зажигание, раз­мыкают 1-2 раза контакты; при этом между ними возникает сильная искра.

Если после присоединения провода конденсатора при размыкании кон­тактов искра останется такой же, то конденсатор неисправен, слабая еле заметная искра между контактами свидетельствует об исправности конден­сатора. Исправность или полноценность конденсатора более точно опреде­ляют на стенде.

Чаще всего катушка зажигания отказывает, если зажигание оставить включенным на длительный промежуток времени при сомкнутых контактах прерывателя. Обмотки катушки зажигания при этом нагреваются, изоляция оплавляется и происходит короткое замыкание витков. При этом может так­же сгореть добавочное сопротивление. Неисправную катушку зажигания не обходимо заменить.

Неисправную свечу зажигания можно обнаружить поочередным отключением провода высокого напряжения от свечи. Если отъединенная свеча ис­правна, то перебои в работе двигателя увеличиваются. При отключении не­исправной свечи зажигания перебои в работе двигателя останутся неизмен­ными.

Для устранения неисправности свечу зажигания необходимо вывернуть и осмотреть, если на ней имеется отложение нагара, то ее необходимо очистить, промыть бензином и продуть сжатым воздухом. Зазор между электродами проверяют и, если необходимо, регулируют подгибанием бокового электрода Свечу зажигания, имеющую трещины изолятора, нужно заменить.

Вторичную цепь батарейного зажигания проверяют при включенном за­жигании и сомкнутых контактах прерывателя. Провод высокого напряжения катушки зажигания устанавливают на расстояние 4-5 мм от любой метал­лической детали двигателя и рукой размыкают контакты прерывателя; ин­тенсивная искра между проводом и деталью двигателя свидетельствует об исправности приборов. Наличие тока в цепи низкого напряжения проверяют лампой, включенной параллельно контактам прерывателя. Лампа должна гореть при включенном зажигании и разомкнутых контактах прерывателя.

Техническое обслуживание. Смазать вал прерывателя-рас­пределителя консистентной смазкой через колпачковую масленку, очистить от пыли грязи и масла поверхность приборов батарейного зажигания, проверить свечи зажигания и при необходимости очистить их от нагара, проверить и отрегулировать зазоры между электродами свечи, снять прерыватель-распределитель, очистить и проверить состояние контактов и зазор между ними. При необходимости отрегулировать, зазор, смазать вал, кулачок, втулку кулачка прерывателя-распределителя и ось рычажка подвижного контакта. Кулачок смазывают от фетрового фитиля, смачиваемого 1-2 каплями жидкого масла, применяемого для двигателя. Втулку кулачка смазывают 1-2 каплями жидкого масла при снятой фетровой шайбе, проверить состояние проводов высокого и низкого напряжения.

Во время проверки работы приборов батарейного зажигания следует избегать соприкосновения с оголенными частями проводов высокого напря­жения.

Ремонт и техническое обслуживание стартера.

Неисправности стартера . К основным неисправностям стартера относятся ослабление крепления подводящих прово­дов, изнашивание или загрязнение щеток и коллектора, окис­ление контактов выключателя, обрыв или замыкание в об­мотках, изнашивание деталей муфты свободного хода и зубь­ев шестерни. Эти неисправности приводят к тому, что стар­тер не работает совсем, не развивает нужные частоту враще­ния и мощность, при включении якорь стартера вращается, а коленчатый вал неподвижен, создается сильный шум при включении и работе стартера.

При включении стартер не работает совсем, характер­ных щелчков тягового реле не прослушивается. Для выявле­ния причин нужно включить фары и стартер. Если при вклю­чении стартера накал ламп не будет изменяться, это указыва­ет на плохой контакт или обрыв в цепях вспомогательного реле либо в цепи основного рабочего тока стартер.

Если накал ламп сильно уменьшается, то вероятной при­чиной может быть плохое состояние аккумуляторной батареи или нарушение контакта в ее клеммных соединениях, а также неисправность электродвигателя стартера. Места плохого кон­такта в электрических цепях и обрыва определяются последо­вательным подключением контрольной лампы в указанных электрических цепях. При необходимости надо проверить сте­пень заряженности аккумуляторной батареи. Если при вклю­чении стартера прослушиваются характерные щелчки, это оз­начает, что тяговое реле исправно.

При включении стартера коленчатый вал проворачива­ ется очень медленно. Наиболее частыми причинами этого являются недостаточная заряженность аккумуляторной бата­реи, окисление и (или) ослабление креплений контактов рабо­чей электрической цепи стартера или пробуксовка (провора­чивание) роликовой муфты свободного хода. При исправной аккумуляторной батарее стартер необходимо снять для про­верки и устранения неисправностей.

При включении стартера якорь вращается, а маховик не­ подвижен. Причинами этой неисправности могут быть про­буксовка муфты свободного хода, выпадение оси или полом­ка рычага муфты, поломка поводкового кольца муфты или буферной пружины.

Сильный шум при включении и работе стартера возмо­жен при ослаблении его крепления, обрыве удерживающей обмотки втягивающего реле, поломке зубцов шестерни при­вода и венца маховика.

Сильный шум после пуска двигателя означает, что стар­тер не выключается. Необходимо быстро заглушить двига­тель, отключить аккумуляторную батарею, проверить креп­ление стартера, а при необходимости снять его и проверить состояние зубцов шестерни привода и обмоток втягивающего реле (замыкание).

Ремонт стартера включает в себя проверку работоспособ­ности на стенде, разборку, проверку деталей и сборку.

Проверка стартера производится на специальном стенде в режиме холостого хода и под нагрузкой. Электрическая схема включения стартера при проверке приведена на рис. 12. Соединительные провода к батарее и амперметру должны иметь сечения не менее 16 мм2. При подводимом напряже­нии 12 В стартер должен на холостом ходу потреблять ток в пределах 70...85 А (в зависимости от модели), а частота вра­щения якоря должна быть в пределах 5000+500 мин -1.

Повышенный потребляемый ток, пониженная частота вра­щения, а также шум во время работы свидетельствуют об электрических или механических неисправностях. Уменьшенный потребляемый ток и пониженная частота вращения якоря при нормальном напряжении на клеммах стартера свидетельствуют о нарушении контактов в соединениях проводов или в щеточном узле (износ, заедание щеток, загрязнение коллектора). Для испытания стартера под нагрузкой в режиме полного торможения на шестерню привода надевают зажимное при­способление с рычагом, соединенное с динамометром, и оп­ределяют тормозной момент. Для этого производится кратковременное (не более 4-5 с, чтобы не перегреть и не повре­дить обмотки стартера) включение стартера и измерение раз­виваемого им усилия по шкале динамометра. При умноже­нии измеренной динамометром величины усилия на длину плеча рычага определяют развиваемый стартером крутящий момент, который должен соответствовать паспортным дан­ным стартера.


Разборка стартера производится в следующем порядке:

· отсоединить от втягивающего реле (см. рис. 12) вы­вод катушки возбуждения и снять его, отсоединив от крышки;

· вывернуть стяжные болты (у стартера автомобиля ВАЗ-2109 предварительно сняв кожух), снять крышку со щетками и вынуть щетки из щеткодержателей со сто­роны коллектора;

· разъединить корпус с передней крышкой и вынуть якорь в сборе с муфтой свободного хода;

· снять муфту свободного хода, для чего необходимо сдвинуть ограничительное кольцо в сторону привода и удалить из проточки вала якоря стопорное кольцо.

После разборки все детали следует промыть и продуть сжатым воздухом и произвести их проверку.

Проверка деталей стартера на замыкание производится при помощи индикатора и источника питания или автотесте­ра, как показано на рис. 13. При обнаружении замыкания по загоранию лампы индикатора дефектная деталь подлежит за­мене.

Якорь стартера не должен иметь механических повреж­дений шлицев и повышенного износа коллектора. При зна­чительной шероховатости и износе коллектора его прота­чивают и зачищают мелкозернистой шлифовальной шкур­кой.

Замкнутые катушки возбуждения можно заменить, от­вернув при помощи пресс-отвертки винты их крепления к корпусу стартера. При заворачивании винтов при сборке их головки зачеканивают во избежание самопроизвольного от­ворачивания.

Муфта свободного хода проверяется по проворачиванию ее шестерни на ступице: шестерня должна свободно прово­рачиваться относительно ступицы в одну сторону и не про­ворачиваться в другую сторону. Зубья шестерни не должны иметь следов выкрашивания и сколов. Небольшие забоины на заходной части шестерни можно удалить шлифовкой мел­козернистым шлифовальным кругом.

Крышки стартера не должны иметь сколов и трещин, изношенные втулки вала якоря перепрессовываются.

Щетки должны свободно перемещаться в щеткодержа­телях и при повышенном износе их необходимо заменить. Высота щеток должна быть не менее 9 мм у стартера авто­мобиля ЗАЗ-1102 и не менее 12 мм - у стартеров остальных легковых автомобилей.

Сборка стартера осуществляется в порядке, обратном разборке. Винтовые шлицы вала якоря при сборке необходи­мо смазать моторным маслом, а втулки якоря и шестерню привода - смазкой Литол-24. При сборке осуществляется регулировка осевого перемещения вала якоря подбором количества и толщины регулировочных шайб, устанавливаемых на передней или задней (в зависимости от конструкции стартера) шейках вала якоря. После сборки проверяют пра­вильность регулировки привода по расстоянию между тор­цом шестерни муфты свободного хода и ограничительным кольцом ее хода.

Техническое обслуживание стартера заключается в пе­риодической подтяжке креплений проводов и очистке наруж­ных поверхностей от загрязнений.

Для обеспечения надежной работы стартера рекомендуется через каждыекм пробега, а при необходимости и раньше, снимать его с автомобиля для очистки и проверки состояния его деталей и смазки. При этом производится зачистка коллектора и при необходимости замена изношенных щеток, а также регулировка привода и осевого перемещения вала якоря.

Общие требования безопасности труда при техническом обслуживании и ремонте автомобилей, производственная санитария и противопожарные мероприятия

Создание безопасных условий труда должно быть опре­ деляющим в любой сфере производственной деятельности человека. И тем более там, где работа связана с повышенной опасностью для здоровья человека.

В России существует государственная Система стандар­ тов безопасности труда, устанавливающая общие требования безопасности работ (ГОСТ 12.3.017-85), которые про­водятся на автотранспортных предприятиях, станциях ТО и специализированных центрах при всех видах технического обслуживания (ТО) и текущего ремонта (ТР) грузовых и лег­ковых автомобилей, автобусов, тягачей, прицепов и полу­прицепов (далее - автомобилей), предназначенных для эк­сплуатации на дорогах общей сети России.

За обеспечением безопасных условий труда ведут наблю­ дение прокуратура, госсанинспекция, гортехнадзор, пожар­ ная инспекция и другие службы государственного контроля . Ответственность за выполнение всего объема задач по со­ зданию безопасных условий труда возлагается на руковод­ ство автотранспортного предприятия ­ ного инженера.

Все лица, поступающие на работу, проходят вводный ин­структаж по технике безопасности и производственной са­ нитарии, который является первым этапом обучения техни­ ке безопасности на данном предприятии. Вторым этапом обу­ чения является инструктаж на рабочем месте, проводимый с целью усвоения рабочим безопасных приемов труда непо­ средственно по той специальности и на том рабочем месте, где он должен работать. При выполнении работ повышен­ ной опасности проводятся повторные инструктажи через определенные промежутки времени, но не реже одного раза в 3 месяца.

Дополнительный (внеплановый) инструктаж проводит­ ся при нарушении работающим правил и инструкций по тех­ нике безопасности, технологической и производственной дис­ циплины, а также при изменении технологического процес­ са, вида работ и типа обслуживаемых автомобилей. Все виды инструктажей записываются в специальные журналы, кото­ рые хранятся у руководителя предприятия, цеха или произ водственного участка.

Производственная санитария. Важным условием безопасного и высокопроизводитель­ного труда является устранение воздействия производствен­ ных вредностей: загрязнения воздушной среды; шумов и вибраций; ненормального теплового режима (сквозняки, низкая или высокая температура на рабочих местах).

Под воздействием производственных вредностей могут возникнуть профессиональные заболевания.

Задачей производственной санитарии и гигиены труда яв­ ляется полное исключение или существенное уменьшение производственных вредностей. Помещения автотранспорт­ ных предприятий и организаций автомобильного сервиса должны быть оборудованы централизованным или автоном­ным отоплением, приточно-вытяжной вентиляцией , санитарно-бытовыми помещениями, душевыми, гардеробными, умывальными, туалетами, помещениями, оборудованными для приема пищи, и местами для курения.

Противопожарные мероприятия. Для помещения автотранспортных предприятий и служб автосервиса характерна высокая пожароопасность. Чтобы не создавать условий для возникновения пожара в производ­ственных помещениях и на автомобиле, запрещается: допускать попадание на двигатель и рабочее место топ­ лива и масла; оставлять в кабине (салоне), на двигателе и рабочих местах обтирочные материалы; допускать течь в топливопроводах, баках и приборах системы питания; держать открытыми горловины топливных баков и со­судов с воспламеняющимися жидкостями; мыть или протирать бензином кузов, детали и агрега­ты, мыть руки и одежду бензином; хранить топливо (за исключением находящегося в топ­ливном баке автомобиля) и тару из-под топлива и сма­зочных материалов; пользоваться открытым огнем при устранении неисп­равностей; подогревать двигатель открытым огнем.

Все проходы, проезды, лестницы и рекреации автотран­ спортных предприятий должны быть свободны для прохода и проезда. Чердаки нельзя использовать под производствен­ ные и складские помещения.

Курение на территории и в производственных помеще­ ниях автотранспортного предприятия разрешено только в от­веденных местах, оборудованных противопожарными сред­ствами и надписью «Место для курения». На видных местах около телефонных аппаратов должны быть вывешены таб­лички с указанием телефонов пожарных команд, план эва­куации людей, автомобилей и оборудования на случай по­жара и фамилии лиц, ответственных за пожарную безопас­ ность.

Пожарные краны во всех помещениях оборудуют рука­ вами и стволами, заключенными в специальные шкафы. В помещениях для технического обслуживания и ремонта ав­тотранспортных средств устанавливают пенные огнетуши тели (один огнетушитель на 50 м2 площади помещения) и ящики с сухим песком (один ящик на 100 м2 площади поме­щения). Около ящика с песком на пожарном стенде должны располагаться лопата, лом, багор, топор, пожарное ведро.

Своевременное обнаружение загорания и быстрое уведом­ ление пожарной команды является главным условием ус­пешной борьбы с возникшим пожаром.

Литература.

1. Калисский (учебник водителя тре­тьего класса), Наг0 г., 384с.

2. АВТОСЛЕСАРЬ. Устройство, техническое обслужи­вание и ремонт автомобилей: Изд. 5-е. Учебное посо­бие. / Герасимен­ко А. И., Рассанов н/Д: Фе­никс, 2004. - 576 с. (Серия «Начальное профессиональ­ное образование ».)

Контактная система зажигания выделяется наличием в составе распределителя, от которого производится подача напряжения к свечам зажигания двигателя.

В чем особенности этой системы? Где она применяется, и как работает? Из каких элементов состоит, и с какими поломками может столкнуться автовладелец в процессе пользования транспортным средством? Рассмотрим эти моменты подробнее.

Где используется?

Прошлые и настоящие владельцы ВАЗ «классики», разбирающиеся в конструкции таких автомобилей, прекрасно знают слабые места и принципы функционирования схемы зажигания контактного типа.

Ее особенность заключается в распределении напряжения к камерам сгорания двигателя через контактные соединения (отсюда и название).

Современные автомобили оборудуются более современным (электронным) зажиганием, которое управляется микропроцессором.

К основным системам, работающим на контактном принципе, стоит отнести:

Общий принцип работы

Наличие контактной системы зажигания в автомобиле подразумевает, что зажигание горючего в цилиндрах осуществляется по факту появления искры от свечи зажигания.

При этом сама искра возникает при поступлении импульса высокого напряжения от катушки зажигания.

Ключевую функцию выполняет катушка зажигания, которая по принципу работы напоминает трансформатор.

Она состоит из двух обмоток (первичной и вторичной), намотанных на сердечник из металла.

Сначала напряжение подводится к первичной обмотке, после чего в катушке создается ток.

Как только происходит кратковременный разрыв первичной цепи, магнитное поле нивелируется, но во вторичной обмотке возникает высокое напряжение (около 25000 Вольт).

В этот момент на первичной обмотке также присутствует напряжение, равное 300 Вольтам.

Причина его появления - токи самоиндукции. Именно из-за появления этого тока возникает обгорание и искрение контактов прерывателя.

Из сказанного выше можно сделать вывод, что вторичное напряжение напрямую зависит от следующих аспектов:

  • Магнитного поля;
  • Уровня интенсивности падения тока в первичной обмотке.

Для роста вторичного напряжения и снижения риска обгорания контактной группы, в цепочку включается конденсатор (устанавливается параллельно). Даже при незначительном размыкании конденсатор заряжается.

Принципиальная схема контактной системы зажигания показана ниже.

Разряд емкости происходит через первичную обмотку, посредством формирования импульсного тока обратного напряжения. Благодаря этой особенности, магнитное поле исчезает, а вторичное напряжение растет.

Оптимальная емкость конденсатора для контактной системы зажигания составляет 0,17-0,35 мкФ. Для примера, в «Жигулях» отечественного производства установлен конденсатор, имеющий емкость в 0,2-0,25 мкФ (при частоте от 50 до 1000 Гц).

Если система зажигания автомобиля работает без сбоев, вторичное напряжение должно постоянно расти. Оно зависит от двух основных параметров - размера зазора между свечными электродами, а также давления в цилиндрах машины.

Для контактной системы зажигания этот параметр (вторичное напряжение) должен находиться на уровне 8-12 Вольт.

Чтобы система работала без сбоев, в момент прерывания упомянутый показатель вырастает до 16-25 кВ. Наличие подобного запаса позволяет избежать неблагоприятных последствий от тех или иных колебаний в системе зажигания.

К упомянутым выше проблемам можно отнести корректировки состава горючей смеси или изменение расстояния между электродами свечи.

К примеру, снижение уровня кислорода в топливно-горючей смеси приводит к росту напряжения до 20 кВ.

Несмотря на ряд проведенных мероприятий, полностью избежать подгорания контактной группы создателям контактной системы зажигания не удалось. Оптимальным способом снижения этого эффекта является четкое выдерживание зазора на минимальном уровне (0,3-0,4 мм).

В качестве примера можно привести отечественные машины ВАЗ, в которых величина зазора в прерывателе равна 0,35-0,45 мм, что соответствует углу в 52-58 градусов Цельсия (при условии, что контактная группа находится в замкнутом состоянии).

В случае изменения этого угла корректируется и напряжение во вторичной обмотке. В итоге искры появляются не только на контактах, но и на бегунках. По этой причине уменьшается качество искры, и мотор теряет мощность.

Отдельного внимания заслуживает надежность контактной системы зажигания, которая зависит от целого ряда факторов:

  • Формы, энергии и времени появления искры;
  • Количества искр на определенной площади;
  • Вторичного напряжения (одна из наиболее важных характеристик). Чем больше этот параметр, тем меньше зависимость системы от состава горючей смеси и уровня чистоты электродов.

Устройство

Не секрет, что контактная система зажигания состоит из множества различных элементов:

  • Механический прерыватель и распределитель. Первый дает ток низкого, а второй - высокого напряжения;
  • Замок, катушка и свечи зажигания;
  • Регуляторы опережения зажигания представлены двумя видами - центробежным и вакуумным;
  • Высоковольтные провода.

Рассмотрим основные элементы подробно:


Конструктивно регулятор - пара грузиков, которые действуют на пластинку с размещенными на ней кулачками прерывателя. Здесь стоит отметить, что пластинка свободно перемещается, но угол опережения ставится за счет позиции трамблера мотора.


Принцип действия

Для полноценного обслуживания контактной системы зажигания важно понимать ее принцип действия, а также особенности взаимодействия различных элементов.

Пока контур прерывателя замкнут, ток проходит только по первичной обмотке.

Как только происходит разъединение цепи с помощью прерывающего устройства, во второй обмотке формируется высокое напряжение.

В этот же момент созданный импульс направляется по бронепроводам к крышке распределительного устройства, а дальше - к свечам зажигания. При этом распределение производится под определенным углом опережения.

Обороты коленчатого и распределительного валов находятся в полном взаимодействии. Это значит, что при росте оборотов первого, частота вращения второго также возрастает.

Здесь в работу вступает регулятор центробежного типа, грузики которого расходятся и передвигают передвижную пластинку с кулачками.

Немногим раньше производится разъединение цепочки прерывателя, а угол опережения растет.

В случае снижения оборотов коленвала происходит обратный процесс - снижение угла опережения.

Схема работы показана ниже.

Контактно-транзисторная система зажигания

Принципиальная схема показана ниже.

Особенность системы в том, что применение дополнительного устройства позволило снизить ток в цепи и продлить ресурс контактной группы прерывателя (она стала меньше подгорать).

Контактно-транзисторная схема, благодаря незначительным изменениям, получила лучшие характеристики, если сравнивать ее с классическим вариантом зажигания. Из-за применения транзистора в системе был добавлен новый узел - коммутатор.

Преимущество транзистора в этой схеме в том, что даже небольшого тока, направленного на управление (в базу), достаточно для контроля тока большей величины.

Как уже отмечалось, новая система контактно-транзисторного типа имеет небольшие отличия от прежней версии системы. Ее особенность заключается в особых характеристиках, которыми не может похвастаться стандартная контактная схема.

Главное отличие заключается в том, что прерыватель взаимодействует напрямую с транзистором, а не с «бобиной». В остальном работа контактно-транзитной системы аналогична.

Как только происходит прерывание тока в первичной обмотке, во второй цепи возникает импульс высокого напряжения.

Если не обращать внимания на конструктивные особенности и принципы подключения коммутатора, можно выделить одно главное преимущество - возможность повышения первичного тока, благодаря применению транзистора.

При этом удается решить ряд задач:

  • Увеличить зазор между свечными электродами;
  • Поднять вторичное напряжение;
  • Устранить проблемы с пуском при низкой температуре;
  • Оптимизировать процесс образования искры;
  • Поднять число оборотов и мощность мотора.

Еще одна особенность контактно-транзисторной схемы заключается в необходимости использования катушки с отдельной первичной и вторичной обмоткой.

Рассмотренные изменения схемы позволили снизить нагрузку на контактную группу прерывателя и уменьшить проходящий через нее ток. В итоге контакты служат дольше, а надежность системы возрастает.

Несмотря на рассмотренные плюсы, нельзя не отметить и ряд минусов контактно-транзисторной системы, которые связаны с работой прерывателя.

Так, в схеме формируется искра в момент, когда происходит разрывание тока в «бобине». Ток, который поступает в транзистор, имеет достаточную величину для влияния на работу детали.

Кроме того, уменьшение тока на контактной группе прерывателя негативно сказывается на определенных характеристиках системы.

Неисправности и их причины

От эффективности работы контактной системы зажигания зависит стабильность пуска автомобиля. Вот почему автовладелец должен знать, какие бывают неисправности, и чем они вызваны.

К основным поломкам можно отнести:

Мощность мотора падает или возникают перебои в его работе.

Причин может быть несколько:

  • Нарушение целостности крышки распределителя;
  • Повреждение ротора;
  • Выход из строя свечи зажигания или нарушение зазора между электродами;
  • Ошибочно .

Для устранения поломки можно сделать следующее - отрегулировать угол опережения, поменять вышедшие из строя элементы или выставить необходимые зазоры в прерывателе и электродах свечей.

На свечах отсутствует искра.

Подобная неисправность может быть вызвана:

  • Обгоранием контактов прерывателя и отсутствием необходимого зазора;
  • Плохим контактом или обрывом проводов во вторичной цепи;
  • Выходом из строя конденсатора, ротора, катушки зажигания, бронепроводов или свечей.

Для устранения неисправности требуется отрегулировать зазор контактов прерывателя, поменять неисправные элементы и (или) проверить исправность цепей обеих обмоток (высшей и низшей).

Принцип действия контактной (классической) системы зажигания

Контактная (классическая) система зажигания

Классическая система батарейного зажигания с одной катушкой и многоискровым механическим распределителем применялась в отечественном автомобилестроении до конца 20-го века. Главным достоинством этой системы являет­ся ее простота, обеспечиваемая двойной функцией механизма рас­пределителя: прерывание цепи постоянного тока для генерирова­ния высокого напряжения и синхронное распределение высокого напряжения по цилиндрам двигателя.

Принципиальная схема классической системы зажигания состо­ит из следующих элементов (рис. 6.4):

· источника электроэнергии – аккумуляторной батареи (генератора) 7;

· катушки зажигания (индукционной катушки) 5, которая преобразует низкое напряжение в высокое напряжение (между первичной и вторичной обмотками существует трансформаторная связь);

· прерывателя 17, содержащего рычажок 6 с подушечкой 7 из
текстолита, поворачивающийся около оси, контакты прерывателя 8, кулачок 16, имеющий число граней, равное числу цилиндров. Неподвижный контакт прерывателя присоединен к «массе»; подвижный контакт укреплен на конце ры­чажка. Если подушечка не каса­ется кулачка, контакты замкнуты под действием пружины. Когда подушечка находит на грань кулачка, контакты размыкаются. Прерыватель управляет размы­канием и замыканием контактов и моментом подачи искры;

· конденсатора первичной цепи 18, подключенного парал­лельно контактам 8, который является составным элементом колебательного контура в первичной цепи после размыкания контактов;

· распределителя 14, включающего в себя бегунок 12, крышку
10, на которой расположены неподвижные боковые электроды 11
(число которых равно числу цилиндров двигателя) и неподвижный
центральный электрод, который подключается через высоковольт­ный провод к катушке зажигания. Боковые электроды через высоко­вольтные провода соединяются с соответствующими свечами за­жигания. Высокое напряжение к бегунку 12 подается через цен­тральный электрод с помощью скользящего угольного контакта. На бегунке имеется электрод 13, который отделен воздушным зазором от боковых электродов 11. Бегунок 12 распределителя и кулачок 16 прерывателя находятся на одном валу, который приводится во вращение зубчатой передачей от распределительного вала двига­теля с частотой, вдвое меньшей частоты вращения коленчатого вала. Прерыватель и распределитель расположены в одном аппарате, называемом распределителем зажигания;

· свечей зажигания 15, число которых равно числу цилиндров
двигателя;

· выключателя зажигания 2;



· добавочного резистора 3 (R доб), который уменьшает тепловые
потери в катушке зажигания (при пуске двигателя R доб шунтируется выключателем 4 одновременно с включением стартера.) Добавочный резистор изготовляют из нихромовой или константановой проволоки, которую наматывают на керамический изолятор.

Рис. 6.4. Принципиальная схема классической системы зажигания

Принцип работы классической системы батарейного зажигания состоит в следующем. При вращении кулачка 16 контакты 8 попере­менно замыкаются и размыкаются. После замыкания контактов (в случае замкнутого выключателя 2) через первичную обмотку катушки зажигания 5 протекает ток (рис. 6.4), нарастая от нуля до определенного зна­чения в течение времени нахождения контактов в замкнутом состоянии. При малых частотах вращения валика 9 распределителя 14 ток может нарастать до значения, определенного напряжением аккумуляторной батареи (генератора) и сопротивлением первичной цепи (установившийся ток). Протекание первичного тока вызывает образова­ние магнитного потока и накопление электромагнитной энергии в обмотках катушки зажигания.

После размыкания контактов прерывателя в первичной обмотке катушки индуцируется ЭДС самоиндукции, которая препятствует уменьшению тока. Эта ЭДС самоиндукции наводит во вторичной обмотке катушки зажигания ЭДС (вторичное напряжение). Согласно закону индукции вторичное напряжение тем больше, чем больше скорость изменения магнитного потока, созданного током первичной обмотки, больше первичный ток в момент разрыва и больше число витков во вторичной обмотке по сравнению с первичной обмоткой (катушка является трансформатором напряжения).

В результате переходного процесса во вторичной обмотке возни­кнет высокое напряжение, достигающее 15…20 кВ. ЭДС самоиндукции в первичной об­мотке катушки зажигания достигает 200…400 В. При отсутствии конденсатора 18 ЭДС самоиндукции вызывает образование между контактами прерывателя во время их размыкания сильной искры, нося­щий дуговой характер. При наличии конденсатора 18 искрообразование уменьшается, так как ЭДС самоиндукции создает ток, заря­жающий конденсатор. В следующий период времени конденсатор разряжается через первичную обмотку катушки и аккумуляторную батарею. Таким образом, конденсатор 18 практически устраняет дугообразование в прерывателе, обеспечивая долговечность контактов и индуцирование во вторичной обмотке высокой ЭДС.

Вторичное напряжение подводится к бегунку распределителя, а затем через электроды в крышке и высоковольтные провода посту­пает к свечам соответствующих цилиндров.


Рис. 6.5. Временные диаграммы тока первичной цепи и вторичного напряжения

Таким образом, рабочий процесс любой батарейной системы зажигания, использующей для получения высокого напряжения индукционную катушку можно разбить на три этапа:

1 этап. Замыкание контактов прерывателя. На этом этапе происходит
подключение первичной обмотки катушки зажигания (накопителя) к
источнику электроэнергии. Этап характеризуется нарастанием первичного тока и, как следствие этого, накоплением электромагнитной энергии в магнитном поле катушки.

2 этап. Размыкание контактов прерывателя. Источник электроэнергии отключается от катушки зажигания. Первичный ток быстро уменьшается, в результате чего накопленная электромагнитная энергия преобразуется в энергию высокого напряжения (ЭДС) во вторичной обмотке.

3 этап. Пробой искрового промежутка свечи. В рабочих условиях при
определенном значении напряжения происходит пробой искрового
промежутка свечи с последующим разрядным процессом.

На первом этапе вторичная цепь практически не влияет на процесс нарастания первичного тока. Токи и напряжения во вторичной цепи при относительно малой скорости нарастания первичного тока незначительны. Вторичную цепь можно считать разомкнутой. Первич­ный конденсатор С1 замкнут накоротко контактами К . Схема замеще­ния для этого рабочего этапа приведена на рис.6.6.

Процесс нарастания первичного тока согласно второму закону Кирхгофа описывается дифференциальным уравнением


где – напряжение первичного источника питания (аккумулятора или генератора); – индуктивность первичной обмотки; – ток в первичной цепи; – сопротивление первичной цепи.

Рис. 6.6. Схема замещения клас­сической системы зажигания после замыкания контактов прерыватели (К – контакты прерывателя, М – взаимоиндукция)

Решением этого уравнения является выражение

Или , (6.2)

где – постоянная времени первичного контура ().

На втором этапе контакты размыкаются. Ток разрыва зависит от времени нахождения контактов в замкнутом состояния :

где – зависит от частоты вращения коленчатого вала двигателя , числа цилиндров , профиля кулачка (т.е. соотношения между углом замкнутого и разомкнутого состояния контактов); – постоянная времени первичного контура.

Частота размыкания контактов для четырехтактного двигателя определяется формулой

. (6.4)Время полного периода работы прерывателя

где – время разомкнутого состояния контактов.

Запасенная электромагнитная энергия в первичной обмотке катушки зажигания

Схема замеще­ния для этого рабочего этапа приведена на рис. 6.7.


Рис. 6.7. Упрощенная схема за­мещения классической системы зажигания после размыкания кон­тактов прерывателя

Согласно этой схеме имеем два магнитосвязанных кон­тура, каждый из которых содержит емкость (С 1 – конденсатор пер­вичной цепи; С 2 – распределенная емкость вторичной цепи), индук­тивность (L 1 , L 2 – индуктивности соответственно первичной и вто­ричной обмоток катушки зажигания), эквивалентное активное со­противление (R 1 , R 2 – суммарные активные сопротивления соот­ветственно первичной и вторичной цепей). Во вторичный контур включены шунтирующее сопротивление R ш и сопротивление потерь R п, учитывающее соответственно утечки тока на свече и магнитные потери.

В момент размыкания контактов прерывателя электромагнитная энергия, запасенная в катушке, преобразуется в энергию электри­ческого поля конденсаторов С 1 и С 2 и частично превращается и теплоту. Значение максимального вторичного напряжения можно получить из уравнения электрического баланса в контурах первич­ной и вторичной цепей, пренебрегая потерями в них:

где , – максимальные значения соответственно первичного и вторичного напряжений.

Так как ,

Однако это выражение не учитывает потери энергии в сопротивлении нагара, шунтирующего искровой промежуток свечи, маг­нитные потери в стали, электрические потери в искровом промежутке распределителя и в дуге на контактах прерывате­ля. Указанные потери приводят к снижению вто­ричного напряжения. На практике для учета потерь в контурах вводят в виде множителя коэффициент затухания , выражающий уменьше­ние максимума напряже­ния из-за потерь энергии:

где – коэффициент затухания составляет для контактных систем зажигания 0,75…0,85.

Для зажигания рабочей смеси электрическим способом необхо­димо образование электрического разряда между электродами свечи, которые находятся в камере сгорания. Протекание электрического разряда в газо­вом промежутке может быть представлено вольтамперной характеристикой (рис. 6.8).

Участок Оаb соответствует не­самостоятельному разряду. Напряжение возрастает, ток остает­ся практически неизменным и по силе ничтожно мал. При даль­нейшем увеличении напряжения скорость движения ионов по направлению к электродам увеличивается. При начальном напряжении U н , начинается ударная иони­зация, т.е. такой разряд, который, однажды возникнув, не требует для своего поддержания воздействия постороннего ионизатора. Если поле равномерное, то процесс ионизации сразу перерастает в пробой газового промежутка. Если поле неравномерное, то вначале возникает местный пробой газа около электродов в местах с наи­большей напряженностью электрического поля, достигшей критиче­ского значения. Этот тип разряда называется короной и соответству­ет устойчивой части вольтамперной характеристики . При дальнейшем повышении напряжения корона захватывает новые области межэлектродного пространства, пока не произойдет пробой (точка с ), когда между электродами проскакивает искра. Это происходит при достижении напряжением значения пробивного напряжения U пр.

Проскочившая искра создает между электродами сильно нагре­тый и ионизированный канал. Температура в канале разряда ра­диусом 0,2…0,6 мм превышает 10 000 К.

Сопротивление канала зависит от силы протекающего по нему тока. Дальнейшее протекание процесса зависит от параметров га­зового промежутка цепи источника энергии. Возможен или тлеющий разряд (участок de ), когда токи малы, или дуговой разряд (участок тп ), когда токи велики вследствие большой мощности источника тока и малого сопротивления цепи. Оба эти разряда являются са­мостоятельными и соответствуют устойчивым участкам вольтамперной характеристики. Тлеющий разряд характеризуется тока­ми величиной 10 -5 …10 -1 А и практически неизменным напряжением разряда. Дуговой разряд характеризуется большими токами при относитель­но низких напряжениях на электродах.

Пробивное на­пряжение ниже мак­симального вторичного напряжения , разви­ваемого системой зажига­ния, и поэтому, как только возрастающее напряже­ние достигает значения , в свече происходит искровой разряд, и коле­бательный процесс обры­вается (рис. 6.5 и 6.9).

Электрический разряд имеет две составляющие; емкостную и индуктивную. Емкостная составляющая искрового разряда пред­ставляет собой разряд энергии, накопленной во вторичной цепи, обусловленной ее емко­стью С 2 . Емкостный разряд характеризуется резким падением на­пряжения и резкими всплесками токов, по своей силе достигающих десятков ампер (рис. 6.9). Несмотря на незначительную энергию емкостной искры (), мощность, развиваемая искрой, благо­даря кратковременности (высокой скорости) процесса может достигать десятков и даже сотен киловатт. Емкостная искра имеет яркий голубоватый цвет и сопровождается специфическим треском.

Высокочастотные колебания (10 6 …10 7 Гц) и большой ток емко­стного разряда вызывают сильные радиопомехи и эрозию элек­тродов свечи. Для уменьшения эрозии электродов свечи (а в не­экранированных системах и для уменьшения радиопомех) во вторич­ную цепь (в крышку распределителя, бегунок, наконечники свечей, в провода) включается помехоподавляющие резисторы.

Поскольку ис­кровой разряд происходит раньше, чем вторичное напряжение дости­гает своего максимального значения , а именно при напряжении , на емкостный разряд расходуется лишь небольшая часть магнитной энергии, накопленной в сердечнике катушки зажигания.

Оставшаяся часть энергии выделяется в виде индуктивного раз­ряда. При условиях, свойственных работе распределителей и раз­рядников, и при обычных параметрах катушек зажигания индуктив­ный разряд всегда происходит на устойчивой части вольтамперной характеристики, соответствующей тлеющему разряду. Ток индуктивного разряда составляет 20…40 мА. Напряжение между электродами свечи сильно понижается до величины 220…330 В.


Рис. 6.9. Изменение напряжения и тока искрового разряда: а и б – соответственно емкостная и ин­дуктивная фазы разряда; – время индуктивной составляющей разряда; – амплитудное значение тока индуктивной фазы разряда; – напряжение индук­тивной фазы разряда

Продолжительность индуктивной составляющей разряда на 2…3 порядка выше емкостной и достигает в зависимости от типа катуш­ки зажигания, зазора между электродами свечи и режима работы двигателя (пробивного напряжения) 1…1,5 мс. Искра имеет блед­ный фиолетово-желтый цвет. Эта часть разряда получила название хвоста искры.

За время индуктивного разряда в искровом промежутке свечи вы­деляется энергия, которая может быть определена аналитически:

На практике широко используется приближенная формула для подсчета энергии искрового разряда:

Расчеты и эксперименты показывают, что при низких частотах вра­щения двигателя энергия индуктивного разряда W ир = 15…20 мДж для обычных классических автомобильных систем зажигания.

Максимальное вторичное напряжение, развиваемое системой зажигания U 2 m .

Аналитические выражения для вторичного напряжения (6.8) и (6.9) показывают, что значение U 2 m зависит от силы тока разрыва I р и, следовательно, определяется режимом работы и типом двигателя (n и z) , работой прерывателя (t з или τ з ), параметрами первичной цепи (L 1 , R 1 , С 1 , UGB, а также зависит от параметров вторичного контура и внешней нагрузки (С 2 , , сопротивления слоя нагара R ш на изоляторе свечи, шунтирующего воздушный зазор свечи).

Зависимость U 2 m от частоты вращения вала и числа цилинд­ров двигателя.

Время замкнутого состояния контактов определяется выражением

где – угол замкнутого состояния контактов; – частота вращения валика распределителя.

Из выражения (6.12) видно, что с возрастанием частоты враще­ния валика время уменьшается и ток разрыва (6.3) становится мень­ше. Уменьшение тока разрыва влечет за собой снижение напряже­ния U 2 m . Увеличение числа цилиндров двигателя при всех прочих равных условиях и параметрах системы зажигания также уменьша­ет время замкнутого состояния контактов и снижает вторичное U 2 m .

На рис. 6.7 приведены характеристики максимального вторич­ного напряжения в зависимости от частоты вращения ко­ленчатого вала двигателя и числа цилиндров двигателя. Характе­ристики носят монотонный убывающий характер, причем закон убывания жестко детерминирован параметрами первичной цепи () и углом замкнутого состояния контактов .

Уменьшение напряжения U 2 m на низких частотах вращения свя­зано с дугообразованием на контактах прерывателя.

Увеличения тока разрыва можно добиться за счет увеличения угла замкнутого состояния контактов, что достигается соответст­вующим профилированием кулачка. Однако по механическим сооб­ражениям увеличить время замкнутого состояния контактов преры­вателя больше чем до 60…65% времени полного периода ( = 0,60…0,65) практически невозможно. На некоторых зарубеж­ных двигателях применяют две независимые схемы с двумя прерывателями и катушкой, работающими на один распределитель. При этом относительная замкнутость может достигать 0,85.

Рис. 6.7. Типовые рабочие харак­теристики классической системы зажигания для четырех- и шести­цилиндровых двигателей

Первичный ток и скорость его нарастания зависят от постоянной нремени первичного контура (рис. 6.8). Чем меньше этот показатель, тем быстрее нарастает ток до установившегося значе­ния. Скорость нарастания тока из выражения обратно пропорциональна индуктивности L 1 :

и при . (6.13)

Однако уменьшение индуктивности целесообразно лишь до определенного значения, ниже которого начинает уменьшаться запас электромагнитной энергии, определяющий вторичное на­пряжение.

При неизменной индуктивности первичной цепи сила тока раз­рыва увеличивается с уменьшением сопротивления R 1 так как уве­личивается установившееся значение тока. При различных значе­ниях сопротивления первичной цепи скорость нарастания тока в начальный момент одинакова, т.е.

Однако чем меньше сопротивление R 1 , тем выше идет кривая тока (рис. 6.9).


Рис. 6.8. Кривые нарастания первичного тока при различных значе­ниях индуктивности первичной цепи ().

Рис. 6.9. Кривые нарастания пер­вичного тока при различных значе­ниях сопротивления первичной цепи

Таким образом, для увеличения максимального вторичного напряжения необходимо уменьшать сопротивление первичной цепи. Однако чрезмерное уменьшение R 1 приводит к увеличению установившего­ся тока, что ухудшает работу контактов при низких частотах враще­ния и приводит к перегреву катушки.

Зависимость U 2 m от емкости первичного конденсатора С 1 .

Из выражения (6.8) видно, что с уменьшением емкости конденсатора С1 вторичное напряжение должно увеличиваться, и при С1 = 0 оно достигает максимального значения. Такой характер изменения U2m возможен лишь при больших значениях С1. В диапазоне малых ем­костей по мере их уменьшения вторичное напряжение также уменьшается. Это явление объясняется тем, что при малой емко­сти не устраняется дугообразование на контактах, вызывающее значительные потери энергии. Характер зависимости вторичного напряжения от емкости конденсатора первичной цепи (рис. 6.10) показывает, что существует оптимальное значение С 1 , определяе­мое условиями гашения дуги на контактах. На практике С 1 выбира­ют в пределах 0,15…0,35 мкФ.

Рис. 6.10. Зависимость вторичного напряжения от емкости конденса­тора в первичной цепи

Зависимость U 2 m от вторичной емкости С 2 .

Значение макси­мального вторичного напряжения также зависит от емкости вторич­ных проводов, емкости свечи зажигания, собственной емкости вто­ричной обмотки катушки зажигания и практически не может быть меньше 40…75 пФ. В случае экранирования системы зажигания емкость вторичной цепи увеличивается до 150 пФ. Следовательно, экранирование, применяемое для существенного снижения радио­помех, значительно уменьшает значение вторичного напряжения.

Зависимость U 2 m от шунтирующего сопротивления R ш .

В про­цессе работы двигателя изолятор свечи нередко покрывается нага­ром, который создает проводящий мостик между электродами све­чи. Этот проводящий слой нагара можно представить в виде рези­стора R ш , шунтирующего воздушный зазор. Из-за наличия R ш на­растающее после размыкания контактов вторичное напряжение создает во вторичной цепи ток, называемый током утечки, который циркулируя во вторичной цепи до пробоя искрового промежутка, вызывает падение напряжения во вторичной обмотке и уменьше­ние подводимого к свече напряжения.

При малом шунтирующем сопротивлении ток утечки возрастает и вторичное напряжение может понизиться до значения меньшего пробивного напряжения, т. е. искра не возникнет (рис. 6.11).

Зависимость U 2 m от коэффициента трансформации.

В случае отсутствия утечек напряжение U 2 m при прочих равных параметрах возрастает с увеличением коэффициента трансформации катушки , стремясь к своему пределу:

При бесконечно большом сопротивлении нагара вся электро­магнитная энергия трансформируется в электростатическую энер­гию вторичной цепи. Однако если ≠ ∞, то каждому значению шунтирующего сопротивления соответствует оптимальный коэф­фициент трансформации, при котором напряжение вторичной цепи максимально (рис. 6.11). Оптимальным для существующих систем зажигания при индуктивности первичной обмотки 6,5…9,5 мГн явля­ется отношение = 55…95.


Рис. 6.11. Зависимость вторичного напряжения от коэффициента трансформации катушки зажигания.

Техническое обслуживание системы зажигания


Система зажигания служит для воспламенения рабочей смеси в цилиндрах карбюраторного двигателя в соответствии с порядком их работы.

Бесперебойное воспламенение рабочей смеси обеспечивается подводом к свечам зажигания высокого напряжения, не менее 16 кВ при пуске холодного и 12 кВ при работе прогретого двигателя. Энергия искрового разряда между электродами свечи зажигания должна обеспечивать надежное воспламенение рабочей смеси как при пуске двигателя, так и на всех режимах его работы. Энергия искрового разряда колеблется в пределах 20-100 МДж.

По способу прерывания- тока первичной цепи батарейные системы зажигания подразделяются на контактные, контактно-транзисторные и бесконтактные транзисторные.

Системы зажигания в зависимости от их исполнения бывают экранированные (для подавления радиоволн, возникающих во время работы системы зажигания) и неэкранированные.

Принципиальные схемы действия систем зажигания показаны на рис. 1. Основным недостатком контактной системы зажигания является ненадежность контактов в работе, недостаточная их долговечность, ограниченность возможностей повышения напряжения. При контактно-транзисторной системе зажигания транзистор (см. рис. 1,б) включен последовательно в первичную цепь. Через замкнутые контакты прерывателя проходит ток небольшой силы (0,5-0,8 А) для управления транзистором, а ток первичной обмотки прерывается не контактами прерывателя, а переходом эмиттер-коллектор транзистора. Тем самым улучшаются условия работы контактов прерывателя, исключается перенос металла с одного контакта на другой, происходит искрогашение (появление токов самоиндукции) и, следовательно, отпадает необходимость применения конденсатора. Однако наличие контактов не исключает все недостатки, которые присущи контактной системе зажигания (износ и окисление контактов прерывателя, износ кулачка). В бесконтактной системе зажигания вместо прерывателя применен бесконтактный датчик импульсов (электромагнитный датчик), представляющий собой малогабаритный генератор переменного тока, который управляет работой транзистора. Бесконтактный датчик импульсов способствует исключению применения контактного узла прерывателя цепи тока низкого напряжения, обеспечивает надежность системы зажигания двигателя.

Рис. 1. Схема систем зажигания: а, б, в - прерыватели тока в первичной цепи соответственно контактной, контактно-транзисторной и бесконтактной транзисторной систем зажигания; 1 - аккумуляторная батарея; 2 - выключатель зажигания; 3 - дополнительный резистор; 4 - катушка зажигания; 5 - распределитель тока высокого напряжения; 6 - свеча зажигания; 7 - прерыватель тока; 8 - конденсатор; 9 - транзистор (коммутатор); 10 - магнитно-электрический датчик (датчик импульсов)

Рис. 2. Катушка зажигания Б114: а - разрез; 6 - схема обмоток; 1 - штуцер клеммы высокого напряжения; 2 – крышка; 3 - клемма высокого напряжения; 4 - контактная пружина; 5 - клемма низкого напряжения; б - уплотнительная прокладка; 7 - кожух; 8 - вторичная обмотка: 9 - контактная пластина клеммы высокого напряжения; 10 - кронштейн; 11 - магнитопровод; 12 - изолирующие прокладки; 13 - изолятор; 14 - первичная обмотка; 15 - сердечник; А - масло

Катушка зажигания предназначена для преобразования тока низкого напряжения (аккумуляторной батареи или генератора) в ток высокого напряжения. Она представляет собой повышающий трансформатор. Катушки зажигания, экранированные и неэкранированные, имеют в основном аналогичную конструкцию и отличаются в основном обмоточными данными и выводом конца вторичной обмотки на корпус.

Катушка зажигания Б114 предназначена для работы только с транзисторным коммутатором ТК102, устанавливается на автомобилях ЗИЛ -130, -130В1, -133Г2, ГАЗ -53-12, -66-11, автобусах ЛиАЗ и ЛАЗ . Катушка Б118 устанавливается на автомобилях ГАЗ -24, -3102 “Волга”, Б117 - на автомобилях ВАЗ , Б115 - на автомобилях “Москвич”, УАЗ -469В.

Внутренняя полость большинства катушек зажигания заполнена трансформаторным маслом.

Дополнительный резистор СЭ107 состоит из металлического корпуса, двух секций фарфоровых изоляторов со спиралями из константановой проволоки каждая сопротивлением 0,5 Ом. Резистор предотвращает увеличение сопротивления цепи при нагреве. Контакты спиралей приварены к контактным пластинам, которые соединены с изолированными от коробки зажимами. Зажимы обозначены буквами К, ВК и БК-Б.

Распределитель PI37 предназначен для прерывания тока низкого напряжения в первичной обмотке катушки зажигания и распределения тока высокого напряжения по свечам согласно порядку работы цилиндров.

Многие детали распределителя подвергаются интенсивному износу. Они требуют систематической смазки в процессе обслуживания: бронзовая втулка валика, кулачок, ось рычажка прерывателя, упорный подшипник.

При контактно-транзисторной системе зажигания почти полностью устраняются подгорание и эрозия контактов. Однако возможно замыкание подвижного контакта на массу, износ фибровой пятки подвижного контакта, поломка или ослабление пружин контактного уголька, поломка подвижного контакта прерывателя, повреждение вакуумного регулятора, корпуса распределителя, ротора, обгорание токораздаточной пластины ротора или сегментов, износ контактного уголька.

Зазор между контактами прерывателя должен быть отрегулирован в пределах 0,35-0,45 мм.

Датчик-распределитель Р351 устанавливается на автомобилях Урал-375Д, ГАЗ -66-11 и др., служит для управления работой транзисторного коммутатора и распределения импульсов тока высокого напряжения по свечам зажигания согласно порядку работы цилиндров двигателя.

Рис. 3. Распределитель зажигания: а - распределитель Р137: 1 - вал; 2 - штифт; 3 - винт крепления октан-корректора; 4 - корпус; 5 - бронзовая втулка; 6 – центробежный регулятор; 7 - подшипник; 8 - неподвижный диск; 9 - подвижный диск; 10 – пружинный держатель; 11, 37 - фильцы; 12 - ротор; 13 - резистор; 14 - крышка; 15 - выводы; 16, 42 - пружины; 17 - контактный уголек; 18 - электрод крышки; 19 - замочное кольцо; 20 - шайба; 21 - кулачок прерывателя; 22 - винт крепления подвижного и неподвижного дисков; 23 - держатель дисков; 24 - октан-корректор; 25 - штуцер для соединения с карбюратором; 26 - вакуумный регулятор; 27 - возвратная пружина; 28 - диафрагма; 29 – тяга; 30 - провод, соединяющий подвижный диск с корпусом; 31 – гайки октан-корректора; 32 – эксцентрик; 33 – держатель неподвижного контак-та; 34 – рычажок с подвижным контактом; 35 – винт; 36 – контакты; 38-провод; 39 – внутренний изолятор; 40 – наружный изолятор; 41 – втулка кулачка; 43 - стойка подвижной пластины; 44 – поводковая пластина кулачка; 45 -поводковая пластина грузиков; 46 – грузик; 47 – ось грузика; 48 – штифт на поводковой пластине кулачка: 49 – верхняя пластина октан-корсектооа: 50 -нижняя пластина; б - установка привода распределителя зажигания; 1 - паз на валу привода распределителя; 2 - нижний фланец корпуса; 3 - риска на верхнем фланце корпуса; 4 - верхний фланец корпуса; 5 - паз

Рис. 4. Датчик-распределительР351: а - общий вид; б - статор датчика; в - ротор и центробежный регулятор датчика; 1 - валик; 2, 6 - муфты ввода проводников; 3 - ротор-распределитель; 4 - подавительный резистор; 5 - патрубок; 7 - крышка экрана; 8 - корпус экрана; 9 - крышка распределителя; 10, 15 - уплотнительные кольца; 11 - втулка; 12 - статор; 13 - ротор; 14 - центробежный регулятор; 16 - контактная пластина; 17 - установочные метки; 18 - концы обмотки; 19 – колодка; 20, 22 - пластины статора; 21 – обмотка; 23 - полюсные наконечники ротора; 24 - магнит; 25 - шпонка; 26 - поводковая пластина регулятора; 27 - грузики регулятора

Датчик-распределитель включает в себя датчик напряжения, распределитель тока высокого напряжения, центробежный регулятор опережения зажигания и октан-корректор.

Свечи зажигания работают в тяжелых температурных условиях, подвержены воздействию импульсов высокого напряжения и механических нагрузок. Свеча состоит из двух электродов, разделенных между собой газовым промежутком 0,6-1,1 мм.

Маркировка свечей: буквы А и Б обозначают размер резьбы в миллиметрах (А-М14х1,25, Б-М18х1,25); цифры указывают на калильное число свечи (10, 11, 14, 15, 17 и т. д.); буквы Н и Д - длину резьбовой части корпуса (Н-11 мм, Д-19 мм), отсутствие буквы соответствует 12 мм, буква В означает, что тепловой конус изолятора выступает за торец корпуса свечи, буква Т указывает, что центральный электрод и изолятор между собой герметизированы термоцементом.

Свечи зажигания СН307 и СН307В (заводское обозначение свечей) экранированы и герметизированы. Для снижения уровня радиопомех в свечи встроены подавительные резисторы. В маркировке свечи может быть указано климатическое и иное предназначение свечи: ХЛ - для холодного климата; У - умеренного; Т - тропического; Э - свеча экспортного назначения и т. д.

Расшифруем условные обозначения свечей. Марка А10Н указывает, что резьба на корпусе свечи М 14×1,25 мм, калильное число равно 10, длина резьбовой части корпуса - 11 мм. Конус изолятора не выступает за торец корпуса свечи, А17ДВ - резьба М14х1,25 мм, калильное число 17, длина резьбовой части 19 мм, тепловой конус изолятора выступает за торец корпуса.

Регулировка угла опережения зажигания

Угол поворота кривошипа коленчатого вала, при котором появляется искра между электродами свечи зажигания до момента подхода поршня к в. м. т., называется углом опережения зажигания. Сгорание рабочей смеси в цилиндре двигателя должно заканчиваться при повороте кривошипа на 10-15° после в. м. т., т. е. в начале рабочего хода. Поэтому искровой расход между электродами должен происходить несколько раньше подхода поршня к в. м. т.

При раннем появлении искры между электродами свечи (большом угле опережения зажигания) давление газов в цилиндре возрастает до прихода поршня в в. м. т. и это создает препятствие движению поршня. Указанное явление приводит к уменьшению мощности и экономичности двигателя, ухудшению его приемистости. При работе под нагрузкой двигатель перегревается, появляются стуки, а при малой частоте вращения коленчатого вала, в режиме холостого хода двигатель работает неустойчиво.

Если зажигание рабочей смеси произойдет при нахождении поршня в в. м. т. или позднее, горение рабочей смеси будет происходить при увеличивающемся объеме цилиндра. Следовательно, давление газов в цилиндре будет намного меньше, чем при нормальном зажигании, и это приведет к резкому падению мощности и экономичности двигателя.

Автоматическое изменение угла опережения зажигания в зависимости от изменения нагрузки двигателя осуществляется вакуумным регулятором опережения зажигания. Угол опережения зажигания должен увеличиваться с увеличением частоты вращения коленчатого вала и уменьшением нагрузки на двигатель; и наоборот, этот угол должен уменьшаться при уменьшении частоты вращения коленчатого вала и увеличении нагрузки.

Необходимо при установке зажигания и после каждой регулировки зазора между контактами прерывателя, а также при применении топлива с другим октановым числом угол опережения зажигания корректировать, пользуясь октан-корректором. Угол опережения корректируют и при уменьшении компрессии в цилиндрах, работе автомобиля в горных условиях, перегреве двигателя вследствие отложения накипи на стенках рубашки двигателя и в трубках радиатора, а также при изменении влажности воздуха.

Установка зажигания. Для получения максимальной мощности и экономичности двигателя необходимо, чтобы правильно было установлено зажигание. Устанавливать зажигание необходимо при сборке двигателя и в тех случаях, когда с двигателя снимается распределитель и привод распределителя, или при нарушении опережения зажигания.

Установка зажигания на двигателях автомобилей ЗИЛ -130, -131, -133Г2, автобусов ЛиАЗ-677, ЛиA3-699P, -695Н и их модификаций производится в следующем порядке:
— вывернуть свечу первого цилиндра;
— установить поршень первого цилиндра в в. м. т. в такте сжатия, для чего закрыть отверстие для свечи бумажной пробкой и провернуть коленчатый вал до выталкивания пробки; после продолжать медленно поворачивать коленчатый вал до совмещения отверстия на шкиве коленчатого вала с меткой “9” на указателе установки зажигания;
— расположить паз на верхнем торце вала привода распределителя (см. рис. 83, б) так, чтобы этот паз совпал с рисками (был параллелен) на верхнем фланце корпуса привода распределителя и был смещен влево и вверх от центра вала;
— вставить привод распределителя в гнездо в блоке цилиндров. Перед началом этой операции (к началу зацепления зубчатых колес) расположить отверстия в нижнем фланце корпуса привода точно над резьбовыми отверстиями под болты крепления корпуса распределителя к блоку. После установки привода распределителя в гнездо в блоке угол, образованный пазом на валу привода и линией, соединяющей центры отверстий на верхнем фланце, не должен превышать ±15°, а паз должен быть смещен к передней части двигателя. При большом угле переставить шестерню привода распределителя относительно шестерни распределительного вала на один зуб так, чтобы этот угол после установки привода в блок был в заданных пределах. Если при установке привода распределителя между его нижним фланцем и блоком остается зазор (это указывает на то, что шип на нижнем конце вала привода не совпадает с пазом на валу масляного насоса), то необходимо провернуть коленчатый вал на два оборота, одновременно слегка надавливая на корпус привода распределителя. После установки привода в блок следует убедиться в совпадении отверстия на шкиве коленчатого вала с меткой на указателе зажигания, расположении паза по отношению к осевой линии, соединяющей отверстия верхнего фланца, в пределах угла ±15° и в смещении паза к передней части двигателя. После выполнения перечисленных операций необходимо закрепить привод распределителя;
— совместить указательную стрелку верхней пластины октан-корректора с меткой “О” шкалы на нижней пластине и такое положение зафиксировать гайками октан-корректора;
— отпустить винт крепления распределителя к верхней пластине октан-корректора так, чтобы корпус распределителя относительно пластины проворачивался с некоторым усилием, и болт расположить посередине овальной прорези;
— снять крышку и установить распределитель в гнездо привода так, чтобы вакуумный регулятор 26 был направлен вперед. При этом ротор должен находиться под контактом первого цилиндра на крышке распределителя и над зажимом вывода низкого напряжения на корпусе распределителя. В указанном взаимном расположении деталей проверить зазор между контактами прерывателя и при необходимости отрегулировать. На автомобиле ЗИЛ -131 при бесконтактной системе зажигания момент зажигания в первом цилиндре устанавливается поворотом корпуса распределителя до совмещения красных меток на роторе и статоре датчика распределителя. При этом пластина ротора должна быть направлена на клемму первого цилиндра;
— установить момент зажигания по началу размыкания контактов, пользуясь контрольной лампой напряжением 12В (мощностью не более 1,5 Вт), присоединив один наконечник к выводу низкого напряжения распределителя, а другой – к массе корпуса.

Чтобы установить момент зажигания необходимо:
а) включить зажигание;
б) медленно поворачивать корпус распределителя по часовой стрелке до тех пор, пока контакты прерывателя замкнутся;
в) медленно поворачивать корпус распределителя против часовой стрелки до начала загорания контрольной лампы. Для устранения всех зазоров в соединениях привода распределителя следует также отжимать ротор в направлении против часовой стрелки. В момент загорания контрольной лампы вращение корпуса прекратить и мелом отметить взаимное расположение корпуса распределителя и верхней пластины октан-корректора.

Чтобы убедиться в правильности установки зажигания, следует повторить выполнение пунктов а, б, в и, если отметки, сделанные мелом, совпадут, осторожно вынуть распределитель из гнезда привода, затянуть болт крепления распределителя к верхней пластине октан-корректора, не нарушая взаимное расположение меток, нанесенных мелом, и снова вставить распределитель в гнездо привода.

При наличии специального ключа с укороченной рукояткой болт крепления распределителя к пластине можно затянуть, не вынимая распределитель из гнезда привода;
установить на распределитель крышку и присоединить привода высокого напряжения к свечам в соответствии с порядком работы цилиндров двигателя (1-5-4-2-6-3-7-8), учитывая, что ротор распределителя вращается по часовой стрелке.

При установке момента зажигания на двигателях, с которых был снят распределитель без привода, следует руководствоваться указаниями первых трех и последних четырех пунктов.

Далее следует проверить установку момента зажигания на двигателе во время дорожных испытаний и уточнить ее с помощью шкалы на верхней пластине октан-корректора. Для этого нужно:
— после прогрева двигателя на ровном участке дороги двигаться по прямой передаче со скоростью 30 км/ч;
— резко нажать до отказа на педаль управления дроссельными заслонками и держать ее в таком положении до тех пор, пока скорость не возрастет до 60 км/ч. В это время нужно прислушаться к работе двигателя;
— при появлении сильной детонации на указанной скорости вращения гаек октан-корректора переместить указательную стрелку верхней пластины по шкале в сторону “-”;
— при отсутствии детонации при указанном режиме работы двигателя вращением гаек октан-корректора переместить стрелку верхней пластины по шкале в сторону знака “+”.

Если зажигание установлено правильно при разгоне автомобиля будет прослушиваться легкая детонация, которая исчезает при скорости 40-45 км/ч.

Каждое деление на шкале октан-корректора соответствует изменению угла опережения зажигания на 4°.

В процессе эксплуатации автомобиля в системе зажигания могут возникнуть следующие характерные неисправности: отсутствие тока низкого или высокого напряжения, перебои в работе системы зажигания, неправильная установка зажигания. Эти неисправности могут стать причиной невозможности пуска двигателя, его работы с перебоями, снижения мощности и ухудшения экономичности двигателя. Но так как к таким последствиям могут привести неисправности и других систем и механизмов двигателя, то необходимо уметь быстро ориентироваться в обстановке, определять причину возникновения тех или иных неисправностей.

Техническое обслуживание системы зажигания осуществляется при каждом очередном ТО-2.

Распределитель (или датчик-распределитель) требует наибольшего ухода, так как его трущиеся детали подвержены износам и нуждаются в систематической смазке.

Нарушение нормальной работы автоматов опережения зажигания оказывает существенное влияние на работу двигателя и расход топлива.

Загрязнение крышки распределителя и неплотная посадка высоковольтных проводов в гнезда выводов могут привести к поверхностному разрушению или пробою изоляции крышки.

Частые разрывы тока значительной величины (3-4 А) вызывают эрозию и подгорание контактов прерывателя, работающего в контактной системе зажигания. Это приводит к увеличению переходного сопротивления и изменению угла замкнутого состояния. Интенсивность износа контактов увеличивается при их загрязнении.

Распределители, работающие в контактной, контактно-транзисторной и бесконтактной (датчики-распределители) системах, имеют неодинаковые объемы обслуживания.

Распределитель контактной системы зажигания необходимо снять с двигателя; очистить наружную поверхность от пыли, грязи и масла; очистить внутреннюю поверхность крышки; проверить состояние контактов и угол замкнутого состояния; проверить работу автоматов опережения зажигания; смазать подшипники, ось рычажка и кулачковую втулку.

Распределитель контактно-транзисторной системы зажигания, не снимая с автомобиля, необходимо очистить от пыли, грязи и масла снаружи. Сняв крышку, очистив ее внутреннюю поверхность; протереть контакты; смазать подшипники, фильц, оси рычажка и кулачковой муфты.

Датчики-распределители также подвергают очистке и смазке в точках, которые конкретно указывают в инструкциях по эксплуатации на конкретные изделия.

При проведении операций обслуживания необходимо соблюдать следующие правила.

Внутреннюю поверхность крышки целесообразно протирать чистой ветошью, смоченной бензином.

Контакты прерывателя должны быть чистыми и не иметь подгара; при необходимости их зачищают абразивной пластинкой. При этом углубления на рабочей поверхности контактов полностью выводить не рекомендуется. После зачистки рабочие поверхности контактов должны оставаться параллельными. Частицы абразива и вольфрама обязательно удаляют, протирая контакты чистой ветошью, смоченной бензином.

В случае большого износа контактов или значительного их обгорания рычажок прерывателя и стойка неподвижного контакта заменяются.

Смазка распределителя производится чистым маслом для двигателя. Масленкой закапывают одну-две капли масла на ось рычажка и фильц и четыре-пять капель во втулку кулачка. При проведении смазки необходимо избегать попадания масла на контакты.

Для смазки подшипников поворачивают на один-два оборота крышку пресс-масленки на корпусе распределителя.

Все распределители через каждые 45-50 тыс. км пробега при очередном ТО-2 снимают с автомобиля для проведения углубленного обслуживания. При этом (кроме рассмотренных операций) разбирают и осматривают подшипник подвижного диска. Внешняя обойма подшипника подвижного диска должна легко проворачиваться относительно внутренней обоймы. При замене смазки необходимо промыть подшипник в керосине. Рекомендуется применять смазку Литол-24 или ЦИАТИМ -201, -202, -221.

Проверка при углубленном обслуживании заключается в определении натяжения пружины рычажка прерывателя, величины сопротивления помехоподавительных резисторов, угла замкнутого состояния контактов, асинхронизма, бесперебойности искрообра-зования, характеристик центробежного и вакуумного регуляторов. При углубленном обслуживании определяются изменения характеристик и параметров распределителей и датчиков-распределителей, которые приводят к такому ухудшению работы двигателя, что не могут быть определены (не ощущаются) водителем при работе автомобиля. В случае расхождения данных, полученных при проверке, с данными технических условий, производят регулировки или заменяют изношенные детали и узлы.

Проверку распределителей, снятых с автомобиля, производят на стендах СПЗ -8, СПЗ -12 или К.И-968, в которые встроены схемы для проверки различных узлов.

Контроль распределителя необходимо начинать с испытания конденсатора, чтобы исключить влияние конденсатора при последующих проверках. При проверке контролируют исправность изоляции и емкость конденсатора. К конденсатору, включенному в схему согласно рис. 7.1, а, подводят постоянное напряжение 500 В. Если конденсатор исправен, то стрелка микроамперметра в период заряда конденсатора в течение долей секунды отклонится, а затем возвратится на нуль. Поворот стрелки микроамперметра на некоторый угол указывает на то, что через изоляцию конденсатора течет ток. Допускается утечка тока, не превышающая 10 мкА. Для удобства измерения шкала прибора имеет закрашенную цветную зону. Конденсатор подлежит замене, если стрелка прибора не будет располагаться в пределах закрашенной зоны.

Рис. 5. Проверка конденсатора: а - проверка сопротивления изоляции; б - измерение емкости; 1 - принципиальная схема устройства; 2 - проверяемый конденсатор

Сопротивление изоляции конденсатора, измеренное омметром, должно быть не менее 40 МОм.

При измерении емкости конденсатор подключают к зажимам измерительного моста, предварительно настроенного на определенную емкость. Значение емкости регистрируется с помощью микроамперметра, шкала которого градуирована в микрофарадах. Шкала прибора имеет цветные закрашенные зоны с указанием пределов измеряемой емкости. Если при измерении стрелка прибора отклоняется за пределы закрашенной зоны, то конденсатор неисправен.

Сопротивление контактов прерывателя оценивают, измеряя величину падения напряжения на замкнутых контактах. При проверке подключают прерыватель с последовательно включенными катушкой зажигания и добавочным резистором к аккумуляторной батарее. Повернув валик прерывателя до замыкания контактов, замеряют падение напряжения вольтметром, которое не должно быть выше 0,1 В. На стендах начало шкалы прибора имеет зачерненную зону, соответствующую допустимому падению напряжения. Если при проверке стрелка прибора будет располагаться правее зачерненной зоны, то сопротивление контактов велико и их необходимо зачистить или заменить. Кроме того, проверяют надежность крепления проводников, соединяющих подвижную пластину прерывателя с корпусом и выводной клеммой распределителя. При расположении стрелки в пределах зоны шкалы состояние контактов нормальное.

Для проверки натяжения пружины подвижного контакта прерывателя необходимо зацепить поводок динамометра за рычажок прерывателя у самого контакта, расположив динамометр вдоль оси контактов. Момент размыкания контактов при плавном наращивании усилия определяют по отклонению стрелки прибора, используемого в предыдущей проверке. При размыкании контактов стрелка прибора отклонится вправо. Натяжение пружины в граммах отсчитывается по шкале динамометра и должно находиться в пределах величин, приведенных в технических условиях. Ослабленную пружину заменяют вместе с рычажком.

Зазор между контактами вследствие эрозии рабочих поверхностей с помощью щупа с достаточной точностью измерить невозможно. Поэтому на существующем оборудовании измеряют и регулируют угол замкнутого состояния контактов, т. е. угол поворота кулачка, в пределах которого контакты находятся в замкнутом состоянии. Проверяемый прерыватель подключают по схеме, приведенной на рис. 6. На шкале микроамперметра нанесены цветные зоны допустимых отклонений угла замкнутого состояния контактов для прерывателей с четырьмя, шестью и восемью выступами кулачка. Резистор подбирается при тарировке прибора в зависимости от частоты вращения, на которой проводится измерение угла замкнутого состояния контактов (например, 1500 об/мин). Чем больше этот угол, а следовательно, и время замкнутого состояния контактов, тем больше средняя величина тока, проходящего через прибор, и тем на больший угол отклонится стрелка прибора. Если вал не вращается и контакты прерывателя замкнуты, то стрелка прибора отклонится на всю шкалу.

Переменный резистор обеспечивает точность настройки прибора в зависимости от напряжения батареи и состояния контактов прерывателя.

Если стрелка прибора выходит за пределы соответствующей цветной зоны, зазор между контактами необходимо отрегулировать. Для этого ослабляют винт крепления стойки неподвижного контакта и, плавно вращая регулировочный эксцентрик, смещают стрелку прибора в нужную зону на шкале. Регулировку проводят без остановки электродвигателя.

Рис. 6. Принципиальная схема включения приборов при проверке угла замкнутого состояния контактов прерывателя: 1 - резисторы; 2 - микроамперметр; 3 - проверяемый распределитель; 4 - электродвигатель; 5 - тахометр

Рис. 7. Принципиальная схема синхроноскопа стенда СПЗ -8

Угол чередования искрообразования (асинхронизм) проверяют при помощи синхроноскопа, устанавливаемого на специализированных приборах и стендах по проверке аппаратов зажигания. На валу синхроноскопа жестко закреплен диск. который вращается одновременно с кулачком проверяемого прерывателя. В диске сделана щель, под которой закреплена неоновая лампа.

При вращении кулачка проверяемого прерывателя в момент размыкания контактов прерывателя ток в первичной обмотке импульсного трансформатора прерывается, и импульсы э. д. с. вторичной обмотки трансформатора, проходя через щетку и контактное кольцо, вызовут свечение неоновой лампы. При вращении на диске синхроноскопа будут видны светящиеся риски, число которых соответствует количеству размыканий контактов за один оборот кулачка.

Совместив нуль градуированной шкалы лимба синхроноскопа с одной из светящихся рисок диска, наблюдают за их чередованием по всей окружности. Чередование светящихся рисок должно быть для распределителей с четырьмя выступами кулачка через 90°, с шестью - через 60°, с восемью - через 45°. Отклонение, вызываемое дефектами деталей прерывателя, не должно превышать ±1,5° во всех точках искрообразования. При большем отклонении угла необходимо заменить втулки вала распределителя.

После этого постепенно увеличивают частоту вращения до максимальной для проверяемого типа распределителя. Если при увеличении частоты вращения на диске синхроноскопа около основной светящейся риски появляются дополнительные, то это указывает на вибрацию рычажка прерывателя вследствие недостаточной упругости пружины, износа отверстия под ось рычажка или вкладышей распределителя. Частоту вращения измеряют тахометром.

Проверку и регулировку центробежного и вакуумного регуляторов опережения зажигания проводят на стендах, имеющих синхроноскоп, тахометр, вакуумметр и насос для создания разрежения в вакуумном регуляторе. Для проверки закрепляют распределитель в держателе кронштейна стенда и соединяют вал прерывателя с валом синхроноскопа. С помощью электродвигателя стенда устанавливают минимально устойчивую частоту вращения, при которой центробежный автомат еще не работает. При этом необходимо поставить лимб синхроноскопа так, чтобы одна из светящихся рисок диска совпала с нулем шкалы. Увеличивая частоту вращения валика, наблюдают за положением светящейся риски на диске синхроноскопа относительно первоначально установленного положения. Частоту вращения контролирует тахометром стенда. Как только вступит в действие центробежный регулятор, светящаяся риска на диске начнет смещаться навстречу вращению. Смещение риски в градусах в зависимости от частоты вращения валика должно соответствовать данным характеристики конкретного типа распределителя. При отклонении замеренных величин регулируют регулятор изменением натяжения пружин грузовиков. Если центробежный регулятор начал действовать при меньшем значении минимальной частоты вращения кулачка прерывателя, необходимо усилить натяжение пружины малой жесткости. Натяжение пружины большой жесткости увеличивают, если центробежный регулятор закончил действовать при меньшей величине максимальной частоты вращения кулачка прерывателя. Натяжение пружин регулируют подгибанием стоек, на которых закреплены концы пружин. Регулировку осуществляют на собранном распределителе при помощи отвертки через выемку в пластине прерывателя. В распределителе 30.3706 ослабевшие пружины заменяют.

Для проверки вакуумного регулятора опережения зажигания устанавливают распределитель на стенд так, как это указано выше, и с помощью шланга соединяют штуцер вакуумного регулятора с вакуумным насосом и вакуумметром. Установив устойчивую частоту вращения валика распределителя, совмещают нуль шкалы синхроноскопа с одной из светящихся рисок диска. Создавая вакуумным насосом разрежение, необходимое для испытуемого типа распределителя, следят за смещением светящейся риски по лимбу синхроноскопа. Смещение риски в градусах в зависимости от показаний, регистрируемых вакуумметром, должно соответствовать данным для испытуемого типа распределителя. Если же результаты проверки не соответствуют, то вакуумный регулятор регулируют изменением натяжения его пружины. Это достигается подбором толщины прокладочных шайб под штуцером или смещением регулятора относительно корпуса распределителя. Если нужный угол опережения создается при меньшей величине вакуума, необходимо увеличить упругость пружины, для чего между торцом пружины и штуцером устанавливают шайбу большей толщины или несколько тонких шайб. Кроме того, характеристика вакуумного регулятора может не соответствовать данным технических условий при нарушении его герметичности и заедания шарикового подшипника подвижного диска прерывателя.

Состояние изоляции крышки распределителя и бесперебойность искрообразования проверяют на стенде при соединении аппаратов зажигания по схеме, приведенной на рис. 8. На распределитель надевают ротор и крышку, а высоковольтные провода вставляют в гнезда крышки. Затем устанавливают зазор между иглами искрового разрядника, включают электродвигатель и увеличивают частоту вращения до максимальной, наблюдая за характером искрообразования.

Распределитель должен обеспечивать бесперебойное искрообразование на разрядниках с искровым промежутком не менее 7 мм при максимальной частоте вращения. Если искрообразование на всех разрядниках бесперебойное, то крышка, ротор и все узлы и детали проверяемого распределителя исправны. Эта проверка позволяет также выявить целостность и прочность изоляции крышки распределителя.

При проверке на стенде искрообразования и регуляторов опережения зажигания распределителей, работающий в контактно-транзисторной системе зажигания, параллельно контактам необходимо подключать конденсатор.

Проверку параметров бесконтактной системы зажигания с магнитоэлектрическим датчиком осуществляют на стенде СПЗ -12, который позволяет проверять контактную и контактно-транзистор-ную системы зажигания.

Контроль ряда параметров бесконтактных систем зажигания имеет свои особенности. Так как в этих системах отсутствуют контакты, а их функцию выполняет выходной транзистор, угол замкнутого состояния будет относиться к выходному транзистору. Для определения угла замкнутого состояния, асинхронизма искрообразования и характеристик центробежного и вакуумного регуляторов на стенде собирается схема, аналогичная схеме включения системы зажигания на автомобиле, но вместо катушки зажигания устанавливают резистор R. Затем с помощью привода стенда устанавливают заданную частоту вращения валика датчика-распределителя. При этом падение напряжения на резисторе R, которое пропорционально углу замкнутого состояния, подают на схему измерения. Стенд СПЗ -12 содержит также синхроноскоп, конструкция которого отличается от рассмотренной выше. Вместо неоновой лампы, расположенной под щелью, в данном случае на вращающемся диске закреплены светодиоды. В зависимости от числа коммутаций, которое должен обеспечить выходной транзистор (четыре, шесть или восемь) за один оборот валика датчика-распределителя, в схему подключается такое же число светодиодов. Каждый из светодиодов коммутируется последовательно один за другим и излучает свет в периоды, когда выходной транзистор открыт. Светодиоды смещены друг относительно друга по радиусу диска и имеют угловое смещение, соответствующее количеству коммутаций за один оборот. Таким образом, при проверке коммутатора с четырехискровым датчиком-распределителем на вращающемся диске будут наблюдаться четыре светящиеся дуги. Они будут наблюдаться синхронно в одном секторе вращающего диска. Угол, на котором будут наблюдаться светящиеся дуги, будет равен углу замкнутого состояния а. Угловая длина наблюдаемых светящихся дуг будет разная, а максимальная разница будет равна асинхронизму аг датчика-распределителя. На величину асинхронизма бесконтактных систем влияют в основном допуски, заложенные при изготовлении датчика, и возникшие в процессе эксплуатации неисправности.

Рис. 9. Схема соединения аппаратов зажигания при испытании на стенде СПЗ -8: 1 - распределитель; 2 - катушка зажигания; 3 - выключатель; 4 - искровой разрядник; 5 - тахометр; 6 - электродвигатель

Характеристики центробежного и вакуумного регуляторов наблюдаются на стенде СПЗ -12 как углы смещения светящихся дуг при изменении частоты вращения или разряжения в вакуумном регуляторе. Так, при увеличении частоты вращения светящиеся дуги благодаря работе центробежного регулятора сместятся в сторону опережения на угол а. Изменение угла а в зависимости от частоты вращения является характеристикой центробежного регулятора. Отсчет всех изменяющихся угловых параметров ведется с помощью градуированной шкалы вокруг диска.

Техническое состояние магнитоэлектрического датчика определяется по развиваемому им напряжению при работе совместно с коммутатором. Для этого сигнал с датчика выпрямляют и подают на измерительный прибор. В зависимости от частоты вращения ротора датчик должен вырабатывать сигнал, значение которого указано в технических условиях.

Рис. 10. Схема соединения аппаратов зажигания на стенде СПЗ -12

Рис. 11. Измерение параметров системы зажигания на синхроноскопе стенда СПЗ -12

В связи с тем что система зажигания с датчиком Холла имеет ряд конструктивных особенностей, рассмотренные выше стенды не позволяют производить ее проверку в полном объеме.

Проверить работу датчика Холла можно следующим образом. К снятому с двигателя датчику-распределителю 40.3706 присоединяется схема, состоящая из источника питания напряжением 8-14 В (аккумуляторной батареи), вольтметра с внутренним сопротивлением не менее 10 кОм и резистора сопротивлением 2 кОм. При медленном вращении рукой валика датчика-распределителя наблюдают за показаниями вольтметра. Когда в зазоре датчика экранирующей шторки нет, вольтметр должен показывать не более 0,4 В. Когда зазор перекрыт экранирующей шторкой, вольтметр должен показывать напряжение, отличающееся от напряжения питания не более чем на 3 В.

Асинхронизм и характеристики регуляторов опережения зажигания датчика-распределителя 40.3706 могут быть определены на стенде СПЗ -12 аналогично определению этих параметров датчика-распределителя с магнитоэлектрическим датчиком. Если при снятии характеристик наблюдаются сбои, то методом замены можно определить, какой аппарат неисправен (коммутатор или датчик-распределитель).

При проверке контактно-транзисторной и бесконтактных систем на бесперебойность искрообразования зазор на разрядниках устанавливают равным 10 мм. Схемы проверки, так же как и для контактной системы, должны повторять схему системы зажигания на автомобиле.

При необходимости отдельной проверки коммутаторов их можно проверить на стенде, собрав схему для проверки бесперебойности искрообразования. Так как все приборы (распределитель, катушка зажигания, дополнительный резистор), за исключением транзисторного коммутатора, могут быть проверены заранее, то в случае их неисправности причиной отсутствия или перебоев искрообразования на разрядниках следует считать неисправность транзисторного коммутатора.

Точно так же осуществляется проверка катушек зажигания. Кроме того, обрыв первичной обмотки и перегорание дополнительного резистора можно проверить с помощью контрольной лампы.

Рис. 11. Схема проверки полупроводникового датчика

При углубленной проверке коммутатора 36.3734 определяется влияние частоты импульсов с датчика на время накопления энергии.

Коммутатор 36.3734 проверяется с помощью осциллографа и генератора прямоугольных импульсов (рис. 12, а). На выводы коммутатора подаются прямоугольные импульсы (рис. 12, б). Частоту импульсов меняют от 3,33 до 233 Гц. Максимальное напряжение импульсов должно быть 10В, минимальное - не более 0,4 В. Длительность минимального импульса определяют по формуле t = 1 /3f. Выходное сопротивление генератора импульсов должно быть не менее 100 Ом. Осциллограф лучше использовать двухканальный, чтобы наблюдать одновременно импульсы коммутатора и генератора. Резистор, к которому подключается осциллограф, должен иметь сопротивление 0,01 Ом ±1 % и быть рассчитанным на мощность не менее 20 Вт. Импульсы, наблюдаемые на коммутаторе, должны иметь определенную форму (рис. 12, в). Максимальная величина тока должна быть 8-9 А, время накопления энергии„ должно быть не менее 8,5 мс при частоте импульсов 3,33 Гц и не менее 4 мс при частоте 150 Гц.

После обслуживания или при замене неисправного распределителя обязательной является установка начального угла опережения зажигания. Установка зажигания производится в соответствии с указаниями Инструкции по эксплуатации автомобиля. При установке начального опережения зажигания целесообразно применять приборы, в которых применен стробоскопический метод измерения (Э102, ПАС -2).

Надежная работа свечи зажигания обеспечивается соответствием типа свечи и ее тепловой характеристики типу двигателя и режимам его работы. Двигатель должен находиться в технически исправном состоянии. Если эти условия соблюдаются, свеча зажигания почти не требует обслуживания в процессе эксплуатации. Возникает необходимость лишь в периодической регулировке искрового промежутка между электродами по мере их естественного износа. Однако достаточно частой причиной отказа свечей в работе является нарушение нормальных условий их эксплуатации из-за неисправностей двигателя. Неполное сгорание топливной смеси из-за ее переобогащения или попадание в камеру сгорания избыточного количества масла приводит к образованию то-копроводящего нагара на поверхности теплового конуса изолятора и утечке по нему тока высокого напряжения. Быстрое нагаро-образование в рабочей камере свечи также может быть следствием несоответствия тепловой характеристики свечи данному двигателю.

Рис. 12. Проверка коммутатора 36.3734

Свечи зажигания подвергаются техническому обслуживанию при каждом ТО-2. Перед вывертыванием свечей необходимо очистить вокруг них грязь, чтобы она не попала в камеру сгорания. Вывертывать и завертывать свечу следует только при помощи специального ключа из комплекта инструментов. Применение обычного гаечного ключа приводит к порче граней корпуса свечи и поломке изолятора.

Осмотром проверяют состояние изолятора и наличие на нем нагара. Нагар красновато-коричневого цвета свидетельствует о нормальном состоянии свечи. Такой нагар имеет высокое электрическое сопротивление и не нарушает работу свечи. Нагар в виде твердой корки черного цвета образуется, когда нет самоочищения свечи. Свечи с черным нагаром необходимо очистить. Очистка производится прибором Э203-0. Прибор обеспечивает пескоструйную очистку свечи и обдув ее после очистки сжатым воздухом.

После очистки проверяют и при необходимости регулируют искровой промежуток между электродами. Для этой цели используется специальный ключ для подгибания бокового электрода, имеющий щупы из стальной проволоки для проверки зазора. Плоским щупом проверять зазор между электродами свечи нельзя, так как при этом не учитывается образующаяся в процессе эксплуатации выемка на боковом электроде (рис. 13).

После регулировки свечу необходимо проверить на бесперебойность искрообразования и герметичность. Такая проверка осуществляется на приборе Э203П. Для проверки свечу вворачивают в барокамеру и подсоединяют высоковольтный провод к головке свечи. Затем ручным насосом по манометру создают в барокамере давление около 1 МПа и нажатием кнопки к свече подается высокое напряжение. Плавно снижая открытием вентиля давление в камере, через смотровое окно ведут наблюдение за искрообразованием между электродами свечи. Максимальное давление, при котором исчезают перебои в искрообразовании, фиксируют по манометру.

Рис. 13. Проверка свечей зажигания на приборе Э203-П: 1 - электрическая схема прибора; 2 - кнопка; 3 - катушка зажигания; 4 - проверяемая свеча; 5 - барокамера; 6, 7 - смотровые окна; 8 - зеркало; 9 - вентиль; 10 - манометр; 11 - клапан; 12 - насос

Искрообразование считают бесперебойным, если при визуальном наблюдении и установившемся давлении в барокамере прибора искры проскакивают между центральным и боковым электродами свечи зажигания непрерывно, без затуханий в течение 30 с.

Испытание свечей зажигания на герметичность производят измерением утечки воздуха через соединение в свече, ввернутой в барокамеру прибора при давлении в ней 1 МПа. Свеча считается пригодной, если утечка не превышает 0,05 МПа за 10 с.

Через 4-5 тыс. км пробега необходимо очищать приборы системы зажигания от пыли и загрязнений, проверять и закреплять провода цепей низкого и высокого напряжения.

Через 10 тыс. км пробега необходимо произвести следующие работы: снять крышку распределителя, протереть ее изнутри ретошью, смоченной бензином, а если будет обнаружено замасливание, то протереть диск и контакты прерывателя. Смазать ось подвижного контакта и фитиль кулачка прерывателя маслом для двигателя. На двигателях «Москвич» и ЗАЗ , кроме того, смазать маслом для двигателя втулку кулачка прерывателя и консистентной смазкой 1-13 валик поворотом колпачковой масленки. На двигателе ВАЗ залить 2-3 капли масла, применяемого для двигателя, в отверстие масленки, предварительно повернув ее крышку. Осмотреть контакты прерывателя и при обнаружении неровностей и обгорания зачистить их надфилем и отрегулировать зазор между ними. Проверить установку момента зажигания, для чего снять крышку распределителя, поворотом коленчатого вала рукояткой установить ротор в положение, когда его разносная пластинка будет направлена на клемму первого цилиндра, присоединить контрольную лампу и медленно поворачивать коленчатый вал (предварительно включив зажигание до загорания лампы -в этот момент установочные метки должны совпадать, при необходимости уточнить установку момента зажигания. Вывернуть свечи, при наличии нагара положить их в бензин или ацетон, через 20-25 мин очистить нагар щеточкой, промыть в бензине, обдуть сжатым воздухом, проверить круглым щупом зазор между электродами и при необходимости отрегулировать его подгибанием бокового электрода.

К атегория: - Техническое обслуживание автомобилей

Для создания искрового разряда между электродами свечи зажигания необходимо высокое напряжение (15000-30000 В), так как газы, находящиеся в цилиндре, не проводят ток низкого напряжения. На современных автомобильных двигателях применяют однопроводную систему соединения источников тока с потребителями. Вторым проводником электрической энергии служит масса (корпус) - все соединенные между собой металлические части автомобиля.

При однопроводной системе включения приборов электрооборудования уменьшается число проводов, упрощается техническое обслуживание и уменьшается стоимость системы. Отрицательные выводы генератора , аккумуляторной батареи и всех потребителей электроэнергии соединены с массой, а положительные изолированы от нее. В эксплуатации необходимо внимательно следить за состоянием изоляции на проводах и за их креплением, так как нарушение изоляции может привести к возникновению короткого замыкания .

:

Схема устройства контактной системы батарейного зажигания :

а) схема ; б) положения ключа выключателя зажигания и стартера ; 1 - рычажок прерывателя ; 2 - подвижный контакт ; 3 - неподвижный контакт ; 4 - кулачок ; 5 - прерыватель низкого напряжения ; 6 - конденсатор ; 7, 14, 23 - провода ; 8 - выключатель зажигания ; 9 - добавочный резистор ; 10 - первичная обмотка ; 11 - вторичная обмотка ; 12 - катушка зажигания ; 13 - магнитопровод ; 15 - выключатель добавочного резистора ; 16 - амперметр ; 17 - аккумуляторная батарея (АКБ) ; 18 - выключатель электродом ; 19 - ротор с электродом ; 20 - распределитель ; 21, 24 - подавительные резисторы ; 25 - свеча зажигания ; 26 - ключ выключателя зажигания.

Контактная система батарейного зажигания состоит из : аккумуляторной батареи 17, катушки зажигания 12, прерывателя 5 низкого напряжения с конденсатором 6, распределителя импульсов высокого напряжения 20, свечей зажигания 25, выключателя зажигания 8, амперметра 16. Прерыватель 5 имеет два контакта : неподвижный 3 соединенный с массой и подвижный 2, расположенный на рычажке 1 и соединенный с проводом 7 с первичной обмоткой 10 катушки зажигания. В прерывателе установлен вращающийся валик с кулачком 4, при помощи которого размыкаются контакты. В системе зажигания в качестве источника электрического тока используется генератор переменного тока.

При замыкании контактов прерывателя ток от АКБ проходит по первичной обмотке катушки зажигания , создавая вокруг нее магнитное поле.

Цепь низкого напряжения следующая : положительный вывод АКБ 17 - амперметр 16 - выключатель зажигания 8 добавочный резистор 9 - первичная обмотка 10 - провод 7 - подвижный контакт 2 - неподвижный контакт 3 - масса - выключатель 18 цепи АКБ - отрицательный вывод АКБ.

При размыкании контактов прерывателя обесточивается первичная обмотка катушки зажигания и резко уменьшается магнитное поле. Магнитный поток исчезающего поля пересекает витки вторичной и первичной обмоток, при этом индуктируется электродвижущая сила (ЭДС) высокого напряжения во вторичной и ЭДС самоиндукции в первичной обмотках. Возникающие во вторичной обмотке импульсы высокого напряжения подводятся к свечам зажигания в соответствии с порядком работы цилиндров двигателя . Вращающийся ротор 19 своим электродом распределяет импульсы высокого напряжения по электродам крышки распределителя. Частота вращения ротора в 2 раза меньше частоты вращения коленчатого вала и, таким образом, совпадает с частотой вращения кулачка прерывателя .

Положение пластины ротора напротив каждого из электродов крышки распределителя соответствует разомкнутому состоянию контактов прерывателя.

Цепь высокого напряжения : вторичная обмотка11 - провод 14 высокого напряжения - подавительный резистор 21 - электрод ротора 19 - один из электродов крышки распределителя 20 - провод 23 - подавительный резистор 24 - свеча зажигания 25 - центральный электрод свечи - боковой электрод свечи - масса - выключатель 18 цепи АКБ - отрицательный вывод АКБ 17 - положительный вывод АКБ 17 - амперметр 16 - выключатель зажигания 8 - добавочный резистор 9 - первичная обмотка 10 - вторичная обмотка катушки зажигания 12.

В первичной обмотке ток самоиндукции возникает при замыкании контактов прерывателя. Ток самоиндукции замедляет процесс исчезновения тока в первичной обмотке, нежелательно, так как при размыкании контактов увеличивается период искрообразования между ними, снижаются эффективность и надежность системы зажигания. Параллельно контактам прерывателя включен конденсатор 6. В момент размыкания цепи низкого напряжения конденсатор заряжается током самоиндукции, а затем при разомкнутых контактах разряжается через первичную обмотку.

Выключатель зажигания 8 необходим для остановки работающего двигателя размыканием первичной обмотки катушки зажигания. Он нужен и для включения зажигания перед пуском двигателя. Ключ 26 выключателя зажигания может занимать четыре положения : 0 - зажигания выключено ; 1 - зажигание включено ; 2 - включены зажигание и стартер ; 3 - подведено питание к радиоприемнику. В положении 0 ключ можно вставить и вынуть из замка зажигания. После пуска двигателя ключ выключателя зажигания переводят в положение 1.

Выключатель 18 цепи АКБ нужен для отключения батареи от массы при выполнении электротехнических работ и для остановки автомобиля на длительное время. Выключатель 18 защищает электрооборудование от короткого замыкания или от пожара при неисправной проводке, а также позволяет отключить батарею от всех потребителей электрической энергии, непосредственно не отсоединяя провода, отходящие от нее. В этом случае остается включенным аварийное освещение - плафон кабины и розетка переносной лампы.

Почему контактная система батарейного зажигания не используется на современных автомобилях?

Постепенно контактную систему батарейного зажигания вытеснили другие системы, такие как контактно транзисторная или бесконтактная системы зажигания . Этому предшествовало ряд недостатков контактной системы батарейного зажигания :

  • Быстрый износ и обгорание контактов прерывателя ;
  • Увеличение зазора между контактами прерывателя, соответственно увеличение угла опережения зажигания ;
  • Уменьшение тока в цепях низкого и высокого напряжения ;
  • Частые перебои с воспламенением рабочей смеси ;
  • Затрудненный пуск двигателя ;
  • Снижение экономичности и мощности двигателя.