Настройка усилителя мощности ланзар - принципиальная схема усилителя мощности, описание принципиальной схемы, рекомендации по сборке и регулировке.  Настройка усилителя и испытание на нагрузке Основные аспекты настройки усилителя

Правильно собранный УНЧ при соответствии режимов транзисторов диаграммам (см. рис. 63 - 68) и табл. 3 должен сразу нормально работать при подаче на вход сигнала от звукового генератора (ЗГ). Поэтому процесс настройки и регулировки усилителя НЧ сводится к проверке чувствительности, величины нелинейных искажений и частотной характеристики, а также к устранению выявленных при этом неисправностей, из-за которых тот или иной параметр не будет соответствовать норме.

Перед началом измерений целесообразно проверить ток потребления усилителем НЧ при отсутствии сигнала. Для этого вынимаются (выпаиваются) все транзисторы до блока УНЧ и замеряется ток. Например, для радиоприемников типа «Спидола» этот ток составляет 6 - 8 ма. Если же измеренный ток превышает эту величину, необходимо заменить транзистор первого каскада УНЧ на триод с большим коэффициентом усиления.

Далее к входу усилителя НЧ подключается ЗГ. Для приемников типа «Спидола» генератор подсоединяется к контакту 10 платы ПЧ-НЧ (см. рис. 2) или лепестку 1 потенциометра R30 (см. рис. 21), а земляной вывод ЗГ соединяется с контактом 7 платы ПЧ-НЧ или лепестком 3 потенциометра R30. Для остальных приемников звуковой генератор подключается к соответствующим выводам разъема «магнитофон» (Ш).

На выход приемника (рис. 69) параллельно звуковой катушке громкоговорителя подсоединяется ламповый вольтметр (ЛВ), осциллограф и измеритель нелинейных искажений (ИНИ). Для всех приемников эти приборы подключаются к гнездам внешнего громкоговорителя на колодке внешних соединений или к соответствующим контактам разъема «магнитофон» (Ш).

Ниже рассматривается порядок настройки и проверки УНЧ приемников типа «Спидола», «ВЭФ-12», «ВЭФ-201», и «ВЭФ-202». Данные по настройке и проверке УНЧ радиоприемников типа «Океан» сведены в табл. 4; «Спидола-207» и «Спидола-230» - в табл. 5. Настройка приемника «Меридиан-202», имеющего значительные отличия в электрической схеме, описывается в § 18.

Для проверки чувствительности УНЧ радиоприемников типа «Спидола», «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» на звуковом генераторе устанавливается частота 1000 гц и выходное напряжение не более 15 же. Регулятор громкости (РГ) ставится в положение максимальной громкости, а регулятор тембра («ВЭФ-12»,« ВЭФ-201» в «ВЭФ-202») - в положение широкой полосы (подъем высоких частот). При этом в громкоговорителе будет прослушиваться звук частотой 1000 гц, а выходной вольтметр покажет величину напряжения этой частоты. Регулятором выхода ЗГ устанавливается такое напряжение, при котором на выходе будет 0,56 в (1,1 в для «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202»). Это напряжение соответствует номинальной выходной мощности. Напряжение на выходе ЗГ и будет чувствительностью тракта НЧ.

Рис. 69. Структурная схема настройки и проверки УНЧ приемников 1,2 - вход блока УНЧ; 3,4 - гнездо внешнего громкоговорителя или разъема «магнитофон» (III)

Параллельно с проверкой чувствительности производится проверка нелинейных искажений тракта усиления НЧ по показанию ИНИ. Коэффициент нелинейных искажений не должен превышать величин, указанных в табл. 2, а изображение синусоиды на экране осциллографа должно быть без искажений. В случае сильных искажений необходимо заменить транзисторы Т9 и Т10. Причинами завышенных нелинейных искажений может быть также неправильная распайка выводов согласующего и выходного трансформаторов (сигнал с выхода УНЧ совпадает по фазе с сигналом на входе). В этом случае необходимо перебросить концы вторичной обмотки трансформаторов. Кроме того, причина может быть в неправильно подобранной емкости конденсатора С80 и С81 («Спидола»), С77 и С76 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и сопротивления резистора R36 («Спидола»), R42 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Таблица 4

Таблица 4

Таблица 5

Для проверки частотной характеристики УНЧ на звуковом генераторе устанавливается частота 1000 гц. Регулятором громкости на выходе УНЧ устанавливается напряжение 0,56 в («Спидола»), 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и в дальнейшем положение РГ не меняется. Напряжение на входе (мх) не должно превышать 12 мв («Спидола»), 10 мв («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). Затем на вход УНЧ подается сигнал частотой сначала 200 гц, а потом 4000 гц (полоса воспроизведения), и в обоих случаях регулятором выхода ЗГ устанавливается напряжение u2t которое соответствует напряжению на выходе 0,56 в (1,1 в). Неравномерность частотной характеристики N определяется из соотношения N = 20 lg (и2/u1) и не должна превышать норм, указанных в табл. 2. Коррекция частотной характеристики может быть осуществлена подбором емкости конденсатора С78 («Спидола»), С73 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Рис. 70. Структурная схема измерения входного сопротивления УНЧ приемников 1,2 - вход УНЧ; Нвх - сопротивление между точками 1 и 2

Иногда полезно знать величину входного сопротивления усилителя НЧ. Для этого собирается схема в соответствии с рис. 70.

Регулятор громкости устанавливается в положение максимальной громкости. От ЗГ на базу первого транзистора усилителя НЧ подается сигнал частотой 1000 гц через резистор R1 (2 - 3 ком) такой величины, чтобы напряжение на выходе было 0,56 в («Спидола») и 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). В этом случае ламповый вольтметр (ЛВ1) на выходе ЗГ покажет величину напряжения ut, a ЛB2 - и2 (вход УНЧ). Зная величину R1 и напряжения и2 и и1, можно подсчитать входное сопротивление усилителя (RBX) по формуле:

Rвх = u2 R1/uR1 = u2/(u1-u2) R1,

где uR1 == u1 - u2.

Величина резистора R1 подбирается так, чтобы щ та 2и2.

Если на выходе УНЧ напряжение, соответствующее номинальной выходной мощности, может быть получено при очень малых напряжениях на входе, то это будет говорить о близости усилителя к самовозбуждению. Причинами этого явления могут быть положительная обратная связь вместо отрицательной, обрыв в цепи обратной связи или неправильная распайка выводов согласующего (выходного) трансформатора. Этот режим характеризуется очень высоким коэффициентом нелинейных искажений и большой неравномерностью частотной характеристики.

После окончания регулировки УНЧ необходимо включить напряжение питания и проверить на слух работу усилителя НЧ при всех положениях регулятора громкости. При положении РГ, соответствующему минимальной громкости, на выходе приемника не должно быть никакого сигнала, а при максимальной громкости и подаче на вход УНЧ сигнала от ЗГ частотой 1000 гц и величиной 15 - 25 мв форма выходного напряжения должна быть неискаженной и без изломов, ярко светящихся точек и т. д.

Рис. 2. Электромонтажная схема платы ПЧ-НЧ радиоприемников «Спидола», «ВЭФ-Спидола» и «ВЭФ-Спидола-10» Резистор R42 установлен со стороны фольги

Рис. 6. Электромонтажная схема платы ПЧ-НЧ радиоприемников «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» Резисторы R10, R22 и R47 установлены со стороны фольги

Рис. 10. Электромонтажные схемы планок диапазонов 25 м - П1 31 м - П2, 41 м - ПЗ, 49 м - П4 (а),- 50 - 75 ж - П5 (б); СВ - П6(в) и ДВ - П7(г) радиоприемника «Океан» На планках диапазонов 25 м (П1) и 31 м (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой
Рис. 11. Электромонтажная схема платы блока УКВ радиоприемника «Океан»

Рис. 12. Электромонтажная схема платы ВЧ-ПЧ радиоприемника «Океан» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1. Точки 20 и 21 платы соединены перемычкой
Рис. 13. Электромонтажная схема платы УНЧ радиоприемника «Океан»

Рис. 15. Электромонтажные схемы планок диапазонов 2о м - П1, 31 м - П2, Им - ПЗ, 49 м - - П4(а); 50 - 75 м - 115(6) радиоприемника «Океан-203» На планках диапазонов 25 м (III) и 31 л (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой

Рис. 16. Электромонтажная схема платы блока УКВ радиоприемника «Океан-203»
Рис. 17. Электромонтажная схема платы ВЧ-Г1Ч радиоприемника «Океан-203» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1
Рис. 18. Электромонтажная схема платы УНЧ радиоприемника «Океан-203»

Рис. 20. Электромонтажная схема - платы блока УКВ радиоприемника «Океан-205»
Рис. 21. Электромонтажная схема платы УНЧ радиоприемника «Океан-205»
Рис. 22. Электромонтажная схема платы выпрямителя радиоприемника «Океан-205»

Рис. 23. Электромонтажная схема платы переключателей В2 - В5 радиоприемника «Океан-205»
Рис. 24. Электромонтажные схемы планок диапазонов 25 м - П1, 31 ж-П2, 41 м - ПЗ, 49 м - П4(а); 50-75 м - П5(6j; CB - П6(в); ДВ - П7(г) радиоприемника «Океан-205» На планках диапазонов 41 м (ЛЗ) и 49 Л1 (U4) вместо перемычки между точками А и В установлен дроссель (Др)

Рис. 25. Участок электромонтажной схемы платы ВЧ-ПЧ радиоприемника «Океан-205» с измененной печатью
Рис. 27. Электромонтажные схемы планок диапазонов 25 ж - П1, 31 М - .П2, 41 м - ПЗ, 49 м~П4(а); 52-75 м - 115(6); СВ - П6(в); ДВ - П7(г) радиоприемников «Спидола-207» и «Спидола-230»

Рис. 28. Электромонтажная схема платы ПЧ-НЧ радиоприемника «Спидола-207» Экраны транзисторов ТЗ - Т7 показаны условно. Положения подвижных ножей переключателей В1 - В5 не показаны

42 43 44 45 46 47 48 49 ..

Настройка и регулировка УЗЧ

Чтобы хорошо отрегулировать УЗЧ, нужно иметь ясное представление о назначении и роли всех входящих в него элементов, понимать физические процессы, происходящие в усилителях, и уметь грамотно пользоваться измерительными приборами.

После проверки работоспособности УЗЧ покаскадно проверяют режимы усилительных элементов (транзисторов - или микросхем) по постоянному току и приступают к настройке и регулировке усилителя. Задача настройки и регулировки УЗЧ состоит в том, чтобы с помощью определенных технологических и контрольных операций, например, установления оптимальных режимов работы отдельных элементов (транзисторов, микросхем), выявления и устранения неисправностей, обеспечить выпуск усилителей, соответствующих стандарту или ТУ.

Перед началом измерений проверяют мощность, потребляемую УЗЧ при отсутствии сигнала на его входе. Для этого переключатель переводят в положение II (см. рис. 65). Мощность, потребляемая УЗЧ, определяется вольтметром V и амперметром А, включенными в цепь питания усилителя. По показаниям этих приборов определяют потребляемый ток I0 и напряжение источника питания 11. Класс точности измерительных приборов должен быть не ниже 2,5. Потребляемая УЗЧ мощность рассчитывается по формуле: Рпотр = I0Еист

На вход УЗЧ чаще всего к соответствующим выводам разъема «Магнитофон» от звукового генератора подается номинальное напряжение сигнала на частоте 1000 Гц, соответствующее номинальной мощности в нагрузке. На выходе УЗЧ параллельно звуковой катушке громкоговорителя присоединяют измерительные приборы: электронный вольтметр 6, осциллограф 7 и измеритель нелинейных искажений 8.

Необходимо убедиться в правильности действия регуляторов усиления. Для этого регулятор громкости устанавливают в положение максимального усиления, а напряжение сигнала на входе каскада увеличивают до получения на выходе УЗЧ напряжения, соответствующего номинальной выходной мощности. Затем ручку регулятора громкости ставят в положение минимального усиления (в пределах плавной регулировки) и опять определяют выходное напряжение. Отношение обоих напряжений на выходе УЗЧ, выраженное в децибелах, характеризует глубину регулировки регулятора громкости и должно соответствовать ТУ.

Покаскадную регулировку УЗЧ начинают с оконечного каскада. В схеме, показанной на рис. 62, входной сигнал от звукового генератора через конденсатор Ср поступает на базу транзистора V. Режим каскада будет определяться напряжением источника питания Ек, постоянным напряжением смещения Uбэо на базе транзистора, падения напряжения на резисторах R2 и R0 в цепи эмиттера, служащего для термостабилизации усилителя.

Налаживание такого каскада УЗЧ сводится к регулировке коллекторного тока транзистора подбором резистора R2, при одновременном измерении напряжения Uбэо которое определяется заданным режимом транзистора. Проверку каскада на отсутствие нелинейных искажений с помощью осциллографа производят, подав от звукового генератора номинальное напряжение сигнала на частоте 1000 Гц на вход оконечного каскада. Коэффициент усиления при этом должен быть максимальным. Если УЗЧ исправен и работает без нелинейных искажений, на экране осциллографа можно наблюдать неискаженную форму выходного сигнала.

При увеличении уровня входного сигнала на выходе будут появляться нелинейные искажения сигнала. На рис. 66 приведены осциллограммы изменения формы синусоидальной кривой сигнала на выходе УЗЧ при различных величинах нелинейных искажений (8, 12, 15 и 20%). Для наблюдения низкочастотного сигнала частота развертки осциллографа выбирается в пределах 200-500 Гц.

Если при номинальном входном сигнале каскад вносит нелинейные искажения (форма сигнала в нагрузке искажена), изменяют режим работы каскада. Изменением коллекторного тока (за счет изменения R2, см. рис. 62) добиваются отсутствия нелинейных искажений.

Рис. 66. Осциллограммы изменений формы синусоидальной кривой сигнала на выходе усилителя при различных величинах нелинейных искажений

Настройку двухтактных выходных каскадов начинают, подав напряжение сигнала от генератора к фазоинверсному каскаду. Предварительное налаживание двухтактного оконечного каскада УЗЧ (см. рис. 64) на транзисторах производят, подбирая идентичные транзисторы или регулируя напряжение смещения с помощью резисторов 1-R13 и 1-R14 в базовых цепях. Условием нормальной работы двухтактного оконечного каскада является симметрия его плеч по постоянному и переменному токам. Следует помнить, что отсутствие симметрии плеч приводит к появлению нелинейных искажений и уменьшению динамического диапазона усилителя из-за плохой компенсации фона переменного тока, помех и т. д.

Регулировка фазоинверсных каскадов (см. рис. 61) заключается в установлении одинаковых значений выходного напряжения, сдвинутых одно относительно другого на 180°. Это осуществляют подбором сопротивлений резисторов в цепях коллектора и эмиттера. Настройка предварительных каскадов УЗЧ заключается в обеспечении типового режима работы транзисторов подбором сопротивлений резисторов R2 и R3 (см. рис. 60).

Окончательный этап налаживания УЗЧ заключается в подборе элементов цепей отрицательной обратной связи. Если в процессе регулировки предварительных каскадов УЗЧ выяснится, что чувствительность усилителя излишне велика, усиление можно уменьшить введением более глубокой обратной связи.

В ряде случаев для получения наиболее приятного звучания производят коррекцию частотной характеристики на низких частотах подбором переходных конденсаторов. Номинальная емкость

Переходных конденсаторов должна быть достаточной, чтобы низкие частоты воспроизводились хорошо. Изменение тембра звука с помощью регулятора тембра должно быть плавным.

Громкость воспроизведения при исправном регуляторе также должна плавно изменяться от максимума до минимума. Если при вращении ручек переменных резисторов (регулятора громкости и тембра) будут прослушиваться трески и шорохи, эти резисторы следует заменить, При максимальной громкости в любом положении регулятора тембра усилитель не должен самовозбуждаться.

Заключительным этапом налаживания УЗЧ является его испытание и проверка всех качественных показателей: уровня собственных шумов (фона), нелинейных искажений, номинальной выходной мощности, диапазона воспроизводимых частот и неравномерности частотной характеристики.

Убедившись в нормальной работе УЗЧ, снимают амплитудно-частотную характеристику (например, осциллографом). Если на

Вход УЗЧ от звукового генератора подать номинальное напряжение сигнала, на экране осциллографа можно наблюдать колебания выходного напряжения. При вращении ручки перестройки частоты генератора по диапазону звуковых частот на экране осциллографа видно, что постоянному уровню напряжений входного сигнала будут соответствовать различные уровни выходного напряжения.

Следует отметить, что схемы, представленные на рис. 8.14, предназначены для преобразования входных сигналов только положительной полярности. При необходимости обработки входных сигналов с отрицательной полярностью можно поменять направление включения диодов на обратное. Для обработки в одном устройстве положительных и отрицательных входных сигналов используют два встречно включенных нелинейных элемента. В качестве нелинейных элементов могут быть использованы биполярные транзисторы (их переходы эмиттер-база). При этом может быть увеличен на один – два порядка диапазон обрабатываемых сигналов и повышена точность обработки, но одновременно повышается и сложность устройства. Усилители (см. рис. 8.14) обычно используются в устройствах перемножения и деления аналоговых сигналов

и в устройствах шумоподавления в усилителях звуковой частоты.

9. РЕГУЛИРОВКИ В УСИЛИТЕЛЯХ

9.1. Общие положения

В зависимости от технического задания на усилитель и его функционального назначения в усилительном устройстве могут быть предусмотрены регулировки самых различных параметров: усилительных свойств, частотных свойств в полосе пропускания и ширины самой полосы пропускания, фазовых характеристик, динамического диапазона, входных и выходных сопротивлений

и т.д. Все эти регулировки могут быть ручными и автоматическими. Решения о необходимости использования ручных регулировок, об их глубине в каждом конкретном случае принимаются и осуществляются оператором, обслуживающим усилитель. Автоматические регулировки осуществляются в усилителе самостоятельно под воздействием изменения заданных условий функционирования. Регулировки могут быть плавными , когда регулируемый параметр меняется плавно и непрерывно, и дискретными , когда регулируемый параметр изменяется скачками. Кроме постоянно действующих регулировок в схему усилителя могут быть введены подстроечные элементы, используемые при первоначальной настройке, ремонте или профилактических работах. Наиболее часто в усилителях используются регулировки коэффициента усиления и регулировки частотных свойств. Последние, при их использовании в усилителях сигналов звуковой частоты, называются регулировками тембра.

9.2. Регулировка усиления

Предназначение регуляторов усиления:

предохранение усилителя от перегрузок в случае, когда динамический диапазон сигнала превышает динамический диапазон усилителя;

поддержание постоянной величины коэффициента усиления при замене активных элементов, старении деталей усилителя, изменении питающих напряжений и т.д.;

изменение величины выходного сигнала в нужных пределах.

Для целей изменения коэффициента усиления можно использовать потенциометрический делитель напряжения, обратную связь с переменной глубиной и изменение режима работы активных элементов.

Потенциометрический регулятор усиления может быть дискретным и плавным (рис. 9.1).

Принцип действия в обоих регуляторах один и тот же. Выходной сигнал u2 выделяется на нижнем плече делителя. Согласно второму закону Кирхгоффа, его величина пропорциональна величине сопротивления, образующего нижнее плечо. Коэффициенты передачи дискретного и плавного регулятора соответственно имеют вид

К Д = u 2

(R 2 + R 3 )

; КП =

R 1 + R 2 + R 3

R1 + R 2

Дискретный регулятор оказывается обычно сложнее плавного и используется чаще всего в измерительной аппаратуре.

Если регулятор усиления должен работать в широкой полосе частот, то приходится учитывать реактивные элементы, подключаемые к нижнему плечу делителя. Такой регулятор, как правило, строится по параллельной схеме (рис. 9.2), собираемой из нескольких делителей с соответствующими коэффициентами деления.

К нижнему плечу делителя оказывается подключенной входная емкость следующего каскада, которая и приводит к частотной зависимости коэффициента передачи. При этом полное сопротивление нижнего плеча с ростом частоты уменьшается и при активном сопротивлении верхнего плеча коэффициент деления падает с увеличением частоты. Для сохранения постоянного коэффи

циента передачи делителя во всем диапазоне частот верхнее плечо приходится шунтировать дополнительной емкостью, которая выбирается из условия равенства постоянных времени верхнего и нижнего плеча.

u 1 R 2

C 2 R 4

Так, для ступенчатого регулятора, представленного на рис. 9.2, должны соблюдаться следующие равенства:

R 1C 1 = R 2C 2 и R 3C 3 = R 4C 4 .

Для облегчения наладки подобных делителей в емкости, шунтирующие как нижнее, так и верхнее плечо, обычно включают подстроечные конденсаторы.

В настоящее время ступенчатые регуляторы начали широко применяться и в усилителях сигналов звуковой частоты. Шаг деления в этом случае вы-

бирается небольшим (1 – 2дБ), а механические переключатели заменяются на-

бором электронных ключей, состояние которых фиксируется запоминающим устройством.

Плавная регулировка усиления осуществляется с помощью переменных сопротивлений, используемых в качестве делителей напряжения сигнала (см. рис. 9.1, б). При проектировании регуляторов громкости для усилителей сигналов звуковой частоты приходится дополнительно учитывать особенности слухового восприятия человека. Человеческое ухо устроено таким образом, что ощущение громкости звука у человека пропорционально логарифму уровня сигнала. Поэтому если взять в качестве регулятора громкости переменный резистор с линейной зависимостью сопротивления от положения движка, то будет казаться, что громкость очень быстро растет в самом начале поворота движка и почти не изменяется на всей второй половине его движения. Использование резистора с показательным законом изменения сопротивления в зависимости от положения движка позволяет получить ощущение равномерного изменения громкости, пропорционального углу поворота движка. Правда, получить такую зависимость на практике мешают сравнительно малые сопротивления, шунтирующие регулятор со стороны источника сигнала и нагрузки и нарушающие необходимый закон изменения сопротивления.

Вторая особенность регуляторов

СН

СВ

громкости связана с изменением частотной

чувствительности человеческого уха при из-

менении громкости сигнала. Дело в том, что

с понижением уровня сигнала чувствитель-

ность уха к верхним и нижним частотам ос-

лабевает. Это ослабление быстро возрастает

с уменьшением громкости. Поэтому для со-

хранения равномерной частотной характеристики восприятия звука при уменьшении уровня громкости необходимо уменьшать сигнал на средних частотах сильнее, чем на нижних и верхних. Такой эффект достигается путем использования тонкомпенсированных регуляторов громкости (рис. 9.3). В этом регуляторе введены дополнительные цепи коррекции частотной характеристики. Конденсатор СВ осуществляет коррекцию в области верхних частот. Емкость СВ выбирается небольшой величины и поэтому не оказывает никакого влияния на область низких и средних частот. На высоких частотах полное сопротивление верхнего плеча делителя уменьшается, что обеспечивает

подъем частотной характеристики на этих частотах по отношению к области средних частот. Постоянная времени последовательного соединения CН RН выбрана таким образом, чтобы эта цепочка шунтировала нижнее плечо делителя в области средних и более высоких частот и тем самым создавала относительный подъем для низкочастотных составляющих спектра сигнала. По мере движения среднего вывода потенциометра вниз этот эффект выпячивания низких и высоких частот по отношению к средним усиливается. Глубина регулировки уровня, оцениваемая как отношение уровней сигнала в крайних положениях регулятора, для описанной выше регулировки громкости лежит в пределах 35 – 45дБ.

Плавное изменение уровня сигнала на выходе усилителя можно осуществить, меняя режим работы активного элемента или глубину обратной связи. Примеры таких схем представлены на рис. 9.4.

В схеме на рис. 9.4, а производится плавная регулировка усиления за счет изменения положения рабочей точки. Увеличение сопротивления R P приводит к уменьшению тока через транзистор, снижению его крутизны и, следовательно, коэффициента усиления данного каскада. Глубина регулировки ограничена тем, что при значительном уменьшении тока эмиттера появляются дополнительные нелинейные искажения и увеличивается влияние собственных шумов.

В схеме на рис. 9.4, б переменное сопротивление R P создает местную отрицательную обратную связь по току, последовательную по входу по переменной составляющей. Глубина обратной связи и соответственно коэффициент усиления зависят от величины сопротивления RP . Если в предыдущей схеме конденсатор СЭ подключить только параллельно сопротивлению RЭ , то в ней будут действовать оба метода и глубина регулировки значительно увеличится.

Управление коэффициентом усиления за счет изменения положения рабочей точки (см. рис. 9.4, в) широко применяется в системах автоматической регулировки усиления (АРУ). В этом случае в цепь базового делителя подается управляющее напряжение UУПР , величина которого определяется значением выходного сигнала.

СЭ

R И R Д

R И R Д

U УПР

При увеличении выходного сигнала под воздействием входного, напряжение UУПР запирает транзистор, а при уменьшении - открывает, поддерживая выходное напряжение постоянным при очень значительных изменениях сигнала на входе.

Следует отметить, что все перечисленные методы регулировки усиления одинаково хорошо работают в усилителях на биполярных и полевых транзисторах.

Изменение глубины обратной

связи с целью изменения коэффици-

ента усиления широко используется

в усилителях на ОУ. Для осуществ-

ления такой регулировки одно из со-

противлений в цепи обратной связи

делают переменным (см. рис. 9.5).

На рис. 9.5,а представлен ре-

гулятор на ОУ с инвертирующим

входом. Изменение положения пол-

зунка сопротивления RP приводит к

изменению глубины обратной связи и соответственно к изменению коэффициента усиления. Одновременно изменение глубины обратной связи влечет за собой изменение входного и выходного сопротивлений. Отличие схемы (см. рис. 9.5, б) от предыдущей состоит в том, что в ней использовано неинвертирующее включение ОУ.

Определенный интерес представляет схема на рис. 9.6. Здесь переменное сопротивление выполняет две функции. Изменение положения движка приводит к изменению уровня сигнала на входе ОУ и одновременно к изменению глубины обратной связи. Таким образом, зависимость коэффициента передачи от угла поворота потенциометра становится показательной и в схеме можно использовать регулятор с линейно изменяющимся сопротивлением.

Можно избежать помех, возникающих из-за нестабильности подвижного контакта, если вместо механического регулирующего элемента использовать сопротивления, управляемые напряжением или током. В качестве таких управляемых переменных сопротивлений используются полевые транзисторы и оптроны . Сопротивление канала полевого транзистора линейно зависит от напряжения между затвором и истоком, о чем свидетельствует семейство выходных характеристик, расходящееся веером при напряжении на стоке, близком к нулю . Включив такое сопротивление в качестве нижнего плеча делителя в цепи обратной связи (рис. 9.7, а), и меняя управляющее напряжение на затворе UУПР , можно регулировать глубину обратной связи и соответственно коэффициент усиления. С увеличением отрицательного управляющего напряжения на затворе сопротивление канала возрастает, растет глубина обратной

UУПР

R ОС

U УПР

Изменение тока через диод под воздействием напряжения UУПР приводит к изменению сопротивления оптрона, включенного в верхнее плечо делителя цепи обратной связи, и соответственно к изменению коэффициента усиления. Подобные схемы очень удобны для создания автоматических систем регулировки усиления и систем дистанционного управления коэффициентом усиления.

Место включения регулятора в схему (плавного и дискретного) определяется несколькими условиями.

С Р2

С Р1

Чтобы усилитель не перегружался и чтобы уже в первых каскадах не возникали нелинейные искажения, регулятор усиления желательно ставить по возможности ближе к входу. Однако если регулятор громкости включить на входе первого каскада, то в этом случае при