3д принтер руками из принтера. Почему именно этот принтер на базе Prusa i3

Собственно, сама мысль собрать принтер своими силами возникла примерно год назад после прочтения статьи на вики про RepRap принтеры. До этого ничего не собирая сложнее корпусов для компьютера, было трудно оценить всю сложность предстоящей работы. Но, листая страницы дальше, обнаружил, что все схемы, чертежи и инструкции присутствуют и более того даже на русском языке.

Немного погодя, оказалось, что все компоненты стоят вместе как готовый принтер и настрой сильно упал (Ох уж эти московские перекупщики), но на помощь пришел Китай со своими сверхдешевыми электроникой и электромеханическими компонентами. В порыве радости был заказан комплект электроники RAMPS 1.4 (Как самый простой в использовании по отзывам), 5 шаговых двигателей типа nema 17 (момент удержания должен быть не меньше 1.5кг/см, но я взял аж 4кг/см), 2 метра приводного ремня размера t2.5 с двумя алюминиевыми шкивами по 20 зубьев, а так же нагревательную платформу (mk2a самая распространенная), так же нужно не забыть взять 12 линейных подшипников lm8uu. На всё я потратил чуть больше 13 тысяч рублей, что, согласитесь, несколько меньше, чем, даже, комплекты для самостоятельной сборки в магазинах.

Спустя 2 месяца ожидания

За эти месяцы я успел познакомиться на форуме с несколькими интересными людьми, один из которых любезно распечатал на своем Replicator2 детали для моего принтера (Я выбрал конструкцию Prusa Mendel i2 из-за её дешевизны и простоты сборки). Кстати говоря, точность изготовления деталей мало на что влияет и, в принципе, можно их делать хоть из ложек, я лично сделал часть деталей для рамы из толстой фанеры. Большой проблемой было найти направляющие валы, которые стоят от 600 рублей за метр (Каленые и прочные, т.е. избыточная прочность), но решение было найдено на рынке: обычные прутки из нержавейки диаметром 8мм отлично подошли (Нужно всего 3 метра, как и что резать, написано на Вики), так же 6 метров шпилек м8 и 6 подшипников 608 (Как в роликах и скейтбордах). В качестве блока питания можно использовать что угодно от 400Вт 12-19В. Забрав с почты последнюю посылку (Не буду говорить про нашу почту, все и так всё знают. Битые и мятые коробки, ожидание, потерянные извещения), я понял, что предстоит много работы.

Первый блин комом

Самую сложную (как выяснилось позже) деталь решено было сделать самому, а именно hotend или сопло. Мой совет: если у вас нет токарного станка и вы не знаете тонкости изготовления хотендов, не беритесь за это. Было потрачено много времени и денег, но сопло было готово (спасибо сайтам и форумам), кстати, как выяснилось, готовое решение стоит 1500 рублей и это в два раза меньше, чем я потратил на свой хотенд. (Если кто-то всё же решится, то советую делать сопло сменным, а в качестве нагревателя не использовать резисторы из магазина, закажите керамический 12В 40Вт из Китая).

Собирать раму и подключать электронику по инструкции не сложно, но долго из-за возни с более чем 50 гаек и винтов.

Самая простая часть позади, предстоял самый долгий этап: настройка. Электроника основана на Ардуино, так что, проблем ни у кого возникнуть не должно. Собственно, нужно в прошивке настроить количество шагов по всем осям и на экструдере, так же настроить концевые датчики, откалибровать высоту и горизонтальность платформы, выбрать правильные термисторы. Кстати говоря, я начинал печатать ABS пластиком без нагревательной платформы на легендарном Синем Скотче. Важно: ABS нельзя печатать без нагревательной платформы, потому что неминуемо будет деформироваться деталь при остывании и все края загнутся наверх.

Детский восторг и осознание того, как много всего надо решить.

Работа над ошибками

Первым делом, я прикрутил нагревательную платформу, которая дала такой потрясающий результат с первого раза:

Ничего не отклеивается и не загибается даже на деталях такого размера. Но были и минусы: синий скотч оставался на деталях и его приходилось переклеивать каждый раз. плюс ко всему, перегорали резисторы раз в неделю стабильно и был заказан нагреватель из Китая.
Печать шла, вроде бы все хорошо, но хотелось большего. Засел за редактор и через пару дней родил проект нового принтера, больше, выше, солиднее. Рама из толстой фанеры, части напечатанные, все шло хорошо, но, собрав всё воедино, оказалось, что направляющие не параллельны и прочее и прочее, в итоге проект был заброшен.

Провал не давал спокойно спать и многие дни я думал надо новой конструкцией. Идей было много, некоторые удалось реализовать, но как это и бывает, с косяками, потому не буду надолго останавливаться на этом.

Музой стал принтер Prusa Mendel третьего поколения с фанерной рамой (Правильно читать не «пруса», а «прюша», т.к. это Чешский парень Йозеф Прюша). Как раз под рукой оказался станок для лазерной резки и автокад. Долгие вечера перед монитором, 3 разные версии.

Не обошлось без напечатанных деталей, но их было уже гораздо меньше: всего 3 каретки и 3 держателя концевиков.

Печать всех частей заняла около 9 часов. В то время я порезал фанеру (Покупайте для резки фанеру в магазинах, потому что на рынках она вся в сучках, которые не прорезаются нормально) и собрал первую версию рамы.



Ставка была сделана на высоту, она составила немного больше полуметра, что давало рабочую область высотой в 420мм, вряд ли вы найдете похожий.

Первое время я использовал пруток 3мм в силу его дешевизны, но для его подачи в экструдер необходимо использовать редуктор. печать неплохая, но подающий болт порой забивается и сам экструдер получается большим.

В следствии, было решено перейти на пруток меньшего диаметра, 1.75мм (Благо, сейчас полно производителей появилось) с маленьким экструдером без редуктора и с большей точностью подачи.

Советую всем сразу печатать прутком 1.75, потому что это реально удобнее. 3мм- это архаизм со времен использования сварочного прутка.

Идеальная машина

Само собой, работы еще предстоит много, но, могу сказать, что это вполне законченный продукт, который, при желании, можно повторить самому. Принтер не отличается ни сверхточностью, ни скоростью печати. Это обычный принтер на уровне того же Prusa i3, просто он выше и удобнее. Хочется сказать, что любой принтер можно настроить так, что он будет не хуже покупных монстров с ценником за 100.000, на который вы потратите не больше 15.000 рублей. Форумы и блоги пестрят различной информации, Китай доставляет что угодно за смешные деньги, так почему бы не сделать это самому?

*пару фотографий последней версии:





Я начинаю публиковать цикл статей по сборке принтера Ultimaker своими руками. В статьях я расскажу про постройку принтера, начиная от заказа запчастей в различных интернет магазинах и Ali, сборки, программирования и т.д., а так же буду собирать его сам вместе с Вами.

Статьи будут написаны в стиле IKEA - доступно и понятно для любого желающего!

Вы сможете в онлайн режиме вместе со мной собрать 3D-принтер для себя, задать вопросы в комментариях к статьям и получить мои ответы. Статьи будут выпускаться с периодичностью в 2 недели.

Стоимость: принтер обойдётся Вам примерно в 25 тысяч рублей - это будет надёжный и качественный аппарат.

Почему здесь и сейчас?
Большинство посетителей сообщества находятся в поисках принтера. Я сторонник сборки принтера своими руками, а что будет дальше, каждый решает сам.
Почему самодельный? Причин несколько:
  • Разумная стоимость. На данный момент принтер обходится в пределах 25 000 рублей. Есть много китайских принтеров стоимостью от 14 до 18 тысяч рублей. Однако, эти конструкторы требуют еще столько же, для того что бы они начали выдавать то что можно назвать 3d-печатью. Эта стоимость заводских принтеров складывается из: маркетинга, зарплаты, инженерных изысканий и т.д. На пути инженерных изысканий я потратил гораздо больше чем 25 000 рублей. Сейчас же я делюсь своими знаниями и накопленным опытом совершенно бесплатно.
  • Приобрести 3D принтер это не пол и даже не треть дела, нужно еще научиться им пользоваться! Так вот опыт сборки и настройки дает ощутимый шаг в освоении 3D печати.
  • Как владелец и пользователь двух принтеров Ultimaker 2 и самодельного Ultimaker, могу точно заявить, скорость и качество печати у них не отличаются. Они оба прекрасно печатают, при этом экструдер и печатаная голова у Ultimaker 2 более капризная.
  • Цикл статьей будет своего рода иллюстрированной инструкцией по сборке и настройке своего личного персонального 3D-принтера. Буду стараться максимально подробно освещаться весь процесс и вести диалог с вами в комментариях.
В качестве принтера для строительства был выбран и взят за основу Ultimaker:
  • Он достаточно прост - в сборке.
  • Он надежен - как автомат Калашникова.
  • Все его чертежи лежат в открытом доступе.
  • Он, пожалуй, самый распространенный в мире.
  • Инженерные изыскания над ним веду я и другие пользователей по всему миру. Почти все, что есть в этом принтере, собрано из разных мест и доступно в открытом виде.Философский вопрос относительно диаметра прутка может быть 3 мм или 1,75мм – каждый решает сам что ему использовать, выскажу только свое мнение по поводу плюсов и минусов.
3 мм – Плюсы :
  • Проще получить пруток более со стабильным качеством, в том числе и в домашних условиях.
  • Лучший для Bowden (боуден) экструдера.
  • Как правильно в принтерах с прутком 3 мм можно использовать пруток 1,75 мм.
  • Перехлесты и зажёвывания в катушках встречаются реже, чем 1,75.
3 мм – Минусы:
  • Мало производителей на данный момент его выпускают.
  • Мало различных видов пластика.
1.75 мм – Плюсы:
  • Очень много разных видов пластика.
  • Гораздо больше производителей.
  • Прекрасен для директ экструдера.
1,75 мм – Минусы:
  • Не очень хорошо себя зарекомендовал для боуден экструдера (некоторые специалисты возразят, но на это могу ответить только одно – попробуйте, а потом обсудим).
На данный момент я на 1,75 мм, но исключительно из за того что скопились большие запасы пластика. Планирую в ближайшее время перейти на 3 мм, если кому нужен пластик 1,75 мм - меняю на 3 мм.

Итак, поехали! Статьи по сборке принтера будут выходить с периодичностью в две недели, по содержанию я наметил примерно следующий план:

1. Этот пост – Вводный. Приобретение всего необходимого.

2. Сборка принтера. Часть первая. Корпус и механика.

3. Сборка принтера. Часть вторая. Электроника.

4. Прошивка и настройка принтера – Marlin.

5. Прошивка и настройка принтера - Repetier-Firmware.

Что необходимо закупить:
1. Корпус на выбор из любого листового материала толщиной 6 мм (фанера, МДФ, акрил, монолитный поликарбонат и т.д.).

Цена за фанерный примерно – 1200-2000 рублей. Лично я делаю .

Если кто-то сомневается в фанерном корпусе, вот небольшое доказательство его надежности, при этом это можно сделать и во время печати, на фото мой принтер из :

41.1. Винт M2.5x20 6 шт.

41.2. Винт M3x10 30 шт.

41.3. Винт M3x12 30 шт.

41.4. Винт M3x14 15 шт.

41.5. Винт M3x16 85 шт.

41.6. Винт M3x20 20 шт.

41.7. Винт M3x25 20 шт.

41.8. Винт M3x30 21 шт.

41.9. Винт M3x4 2 шт.

41.10. Винт M3X5 10 шт.

41.11. Винт M3X6 10 шт.

41.12. Винт M3X45 2 шт.

41.13. Винт M3x8 10 шт.

41.14. Гайка M2,5 6 шт.

41.15. Гайка M3 130 шт.

41.16. Гайка самоконтрящаяся M3 35 шт.

41.17. Шайба M2,5 6 шт.

41.18. Шайба кузовная или широкая M3 17 шт.

Пока не настали те времена, когда 3D принтер можно будет купить в любом магазине электроники по цене картриджа для него же, а цены на готовые 3D принтеры в специализированных интернет-магазинах, мягко говоря, вызывают удивление. Поэтому человеку со здраво мыслящей головой проще сделать 3D принтер своими руками из 4-ех моторчиков и нескольких железок, продающихся в любом строительном центре за пару тысяч рублей, тем самым сократив бюджет на постройку 3D принтера как минимум в два, а то и во все десять раз.

Мы тоже не будем отставать от этого человека с головой, и сделаем 3D принтер своими руками из доступных материалов!

Неподготовленного читателя сперва может смутить вид самодельного 3D принтера, но хочу напомнить, что смысл RepRap 3D принтера в том, что он может сам для себя печатать детали. Поэтому собрав изначально 3D принтер своими руками из подручных материалов вы постепенно обновите все его детали и станете обладателем вот такого вот пластикового красавчика, как на фото. Ну или какого-нибудь другого… какого сами захотите

Создавать 3D принтер своими руками я начал с конструкции, относящейся к классу Delta-роботов. Попытался создать так называемый Дельта 3D принтер. Он обладает достаточно простой конструкцией для изготовления своими руками, которую вполне возможно сделать достаточно жесткой, чтобы обеспечить высокую точность при достаточно высоких скоростях 3D печати, характерных именно для Dleta 3D принтеров.

Как видно из фотографии, все оси у Delta 3D принтера располагаются параллельно на трех ребрах жесткости, которые одновременно могут быть и направляющими для кареток осей. Ребра жесткости образуют треугольник с углами в 120°, образуя латинскую букву Δ - Дельта. Отсюда и название.

Но пока я временно заморозил строительство делта 3D принтера своими руками по причине того, что для его печатающей головки требуются шариковые шарниры стоимостью не менее 300 рублей за штуку. А надо их по 4 на каждую ось. Итого выходит 300 руб Х 4 шт Х 3 оси = 3600 рублей только на одни шарниры. Это уже немного не бюджетно, поэтому я в фоновый мозговой процесс погрузил задачу снижения стоимости шарниров для Дельта 3Д принтера.

А пока этот процесс выполняется, я начал делать 3D принтер своими руками по более традиционной конструктивной схеме — в виде кубика с ортогональным размещением осей X и Y, а также подъемным столиком с подогревом в качестве оси Z. И в процессе конструирования у меня появились некоторые мысли по поводу того, как минимизировать размер занимаемого 3D принтером пространства на рабочем столе. В итоге должно получиться не менее компактно по площади, чем у Delta-принтера, и гораздо меньше в высоту. Слишком большая высота — это как раз один из минусов Delta 3D принтеров.

Корпус моего первого 3D принтера выполнен из обычной ламинированной ДСП. Ее всегда можно купить в любом строительном торговом центре или в фирмах по распиловке ДСП. Когда делаешь 3D принтер своими руками в виде кубика, то получаешь дополнительные преимущества в виде защиты от сквозняков, от которых часто страдают модели, печатаемые ABS-пластиком. На круглые дырки в стенке не обращайте внимания — они остались от предыдущего недоделанного проекта, и на самом деле их там быть не должно

Как видите, в верхней крышке короба 3D принтера проделано оконце для подачи пластика в печатающую головку. Я решил сделать выносной экструдер, чтобы максимально облегчить вес печатающей головки, оставив на ней только нагреватель и сопло (так называемый «горячий конец» — HotEnd 3D принтера).

Сама печатающая головка висит на направляющих осей X и Y, которые тоже прикручены к верхней крышке 3D принтера. Когда делаешь 3D принтер своими руками, то нужно стараться выбирать для монтажа только ровные поверхности, полученные промышленным способом. Так, например, поверхность ДСП можно считать условно ровной (укладывающейся в приемлемые допуски по точности). Поэтому мы можем смело разместить в разных концах этой поверхности по одной направляющей, и считать их параллельными (плоскости ДСП, разумеется), без необходимости их юстировки (точного выставления параллельности).

Параллельность этих же направляющих в другой плоскости мы будем выставлять уже при помощи собранной каретки оси X. Сперва мы перемещаем каретку X вдоль оси Y в одно крайнее положение и засверливаем отверстия для крепежа, затем ведем вдоль оси Y в другое крайнее положение и засверливаем уже с другого конца. Фиксируем держатели направляющих винтами также перемещая каретку сперва в одно крайнее положение, затем в другое.

На фотографиях выше также очень хорошо виден подъемный столик с подогревом. Это ось Z нашего 3D принтера. Он тоже сделан своими руками из обычного куска ДСП, у которого по углам вырезаны отверстия для крепления подшипников скольжения, ходящих вдоль четырех направляющих. Направляющие и подшипники скольжения — это то, что в любом случае скорее всего придется купить.

Если же вы хотите сделать 3D принтер своими руками, минимизируя количество покупных компонентов, то направляющие и подшипники скольжения можно вынуть из старых струйных принтеров. Как раз парочку я недавно нашел на помойке, когда вывозил мусор. Но так везет все реже, поэтому что-то все равно придется покупать

Приводом для перемещения каретки по осям X и Y служат зубчатые ремни, вращаемые шаговыми двигателями. На оси X стоит всего один шаговый двигатель, т.к. ему достается самая легкая работа — таскать печатающую головку, состоящую из лёгенького HotEnd’а. Вдоль оси Y будут трудиться уже два шаговых двигателя на зубчатых ремнях, каждый из которых будет тянуть свою сторону каретки оси X. Изготавливая 3D принтер своими руками лучше лишний раз перестраховаться и исключить возможные перекосы каретки из-за недостаточной жесткости, а жесткости будет всегда не хватать, когда во главу угла ставиться максимальная экономия.

Если поставить всего один двигатель на ось Y, расположив его с одной стороны каретки оси X, то вторая сторона каретки будет перемещаться по направляющей рывками. Расположив же сразу два двигателя с разных сторон каретки оси X, мы не только обеспечим синхронное движение подшипников скольжения на направляющих, но также сможем в любое время скорректировать перпендикулярность осей X и Y, немного подкрутив вручную один из двигателей, оставив другой неподвижным. Таким образом, делая 3D принтер своими руками и ставя два двигателя на одну ось, мы оставляем себе большее пространство для маневра в плане регулировки точности 3D принтера.

Одной из самых важных задач при настройке 3D принтера своими руками является регулировка параллельности плоскости XY и плоскости столика с подогревом, перемещаемого по оси Z. В каждой точке столика сопло печатающей головки должно находиться строго на одном и том же расстоянии от поверхности печати. Это необходимо, чтобы при формировании первого слоя детали не произошло отслоения пластика от подогреваемого столика. Если сопло будет слишком далеко от стола, то пластик просто не сможет к нему прилипнуть, что может привести к порче всей детали.

Для обеспечения возможности установки параллельности столика 3D принтера, его делают регулируемым с четырех сторон винтами, внатяг подпертыми пружинами. Регулировка осуществляется поочередным подтягиванием или отпусканием регулировочных винтов в тот момент, когда сопло находится в непосредственной близости от регулируемого в данный момент винта. Придется несколько раз подгонять печатающую головку 3D принтера к каждому из винтов, чтобы выставить плоскость достаточно точно.

Если вы не очень доверяете своему глазомеру, то для выставления одинакового расстояния от сопла печатающей головки до нагревательного столика 3D принтера можно воспользоваться обычным листом бумаги. Если лист перестает двигаться по столу, значит сопло его уже прижало, и регулировочный винт можно оставить в этом положении.

Теперь про ось Z, вдоль которой будет подниматься подогреваемый столик 3D принтера. От разрешающей способности оси Z в большей степени зависит итоговое качество напечатанной детали. Поэтому чем меньший шаг может обеспечить ваша ось Z, тем более детализованной получится итоговая деталь. Но, правда, и печататься она будет гораздо дольше, это мы уже будем решать отдельно для каждой напечатанной детали. Главное, чтобы у нас была возможность печатать максимально точно, если уж мы делаем 3D принтер своими руками.

Для этого привод оси Z обычно делается на винтовой передаче, а не на зубчатом ремне. Если взять в качестве винта строительную шпильку с шагом резьбы в 1 мм и шаговый двигатель с 200 шагами на один оборот (стандартный двигатель с 1,8° на шаг), то минимальное теоретическое перемещение оси Z нашего 3D принтера получится 1/200 мм или 0,005 мм (5 микрон)! На практике такое перемещение вряд ли осуществимо с применением стандартных направляющих и подшипников скольжения, поэтому даже 0,05 мм нам хватит за глаза.

Я решил для своего подъемного столика установить две винтовых передачи с разных сторон и вращать их двумя шаговыми двигателями, подключенными параллельно. Такая возможность уже заложена в ставшую стандартом плату RAMPS 1.4, где под ось Z предполагается подключение сразу двух двигателей. Однако есть риск получить артефакты на итоговой детали в виде волнистых перепадов между напечатанными слоями. Это будет свидетельствовать о несинхронном вращении винтов или о неких перепадах шага резьбы на винтах. В конце концов, строительная шпилька производится, чтобы стянуть две доски опалубки при заливке бетона, а не для оси 3D принтера с микроперемещениями

В любом случае, если такие артефакты появятся, то можно потом будет переделать конструкцию столика, убрав одну ось и переместив его всего на две направляющих, немного удлиннив их при этом. Что в итоге получится, читайте на моем ТехноБлоге Dimanjy и следите за обновлениями.

Кстати, снял небольшое видео 3D принтера. Показан подъемный столик в работе. Вроде движется и не клинит, хотя движочки поставил довольно слабенькие: ток обмотки всего 0,4 А и момент на валу 1,7 кг х см. Покуда движков два и подключены они параллельно, то на драйвере выставил двойной ток — около 800 мА. Не нравятся мне эти стандартные драйвера A4988 — у них после прекращения поступления шагов включается режим удержания, причем его ток значительно превышает номинальный, и движки начинают греться. На винтовой передаче вообще удержание не требуется, но я не знаю, как это отключить на этих драйверах. Прям хоть снова свои драйвера паяй

А вот видео 3D принтера, в котором я испытывал ось X. Перемещения довольно бодрые, но при этом корпус немного пошатывает. При печати это обязательно скажется, поэтому нужно корпус связать треугольными перемычками, которые не дадут ему расшатываться в этой плоскости. У корпусной мебели для этих целей служит обычно задняя стенка из ДВП, которая прибивается по всему периметру и не дает корпусу шататься по диагоналям.

Теперь по поводу экструдера для 3D принтера. Ему я посветил отдельную статью, потому как он является довольно ответственной частью 3D принтера. В этой статье я расскажу, как изготовить .

Обновление от 28.11.2015

Начал усиливать элементы конструкции. Жесткости одних направляющих не хватает. Вернее, хватило бы, но для этого нужно делать более массивные крепления самих направляющих, а это крадет драгоценные сантиметры полезной поверхности, по которой могла бы кататься каретка. Я хочу сделать конструкцию прочной и компактной (хотя одно другому противоречит).

Для бюджетного 3D принтера хорошим конструкционным материалом является фанера, но сконструировать из фанеры квадратные балки — та еще задачка, особенно если используешь для проектирования 3D принтера бесплатный софт вроде QCad Но, используя пространственное мышление, можно-таки нагородить что-то вроде вот этого.

Благодаря точности моего ЧПУ станочка, я могу выпиливать посадочные места для подшипников качения и жестко запрессовывать их туда без необходимости их дополнительного крепежа (хрен их оттуда потом вынешь — приходится ломать всю балку и вытачивать новую). Это куда более надежно, чем пластмассовые затяжки, которые я сперва применял, насмотревшись фоток любительских конструкций 3D принтеров в интернете.

Обновление от 3.12.2015

Работа кипит. Я так вдохновился результатами конструирования 3D принтера из фанеры, что решил построить 3D принтер своими руками из фанеры целиком! Но для такого ответственного мероприятия у меня уже не хватает воображения для плоского моделирования деталей 3D принтера в QCAD, поэтому я переключился на объемное моделирование во FreeCAD. Конечно, освоение параметрического моделирования идет туговато, но кое-что уже получается. Тяжело в учении — легко в бою! Вот примерно так будет выглядеть мой 3D принтер из фанеры:

Особенность данной конструкции 3D принтера будет заключаться в том, что в нее заложена возможность роста в прямом смысле слова. Верхняя печатающая часть будет легко сниматься и переставляться на более высокую коробку с осью Z.

Кстати, я, как и советовали мне в комментариях, решил пересмотреть кинематическую схему и попробовать CoreXY. Кратко об основных преимуществах кинематики CoreXY:

1. Мы не таскаем с собой двигатели — они жестко крепятся на раме. Отсюда возможность получить ускорения, недостижимые со стандартной кинематикой (когда приходится с собой таскать двигатель оси X).

2. Уравновешенность моментов на каретке. Отсутствие сил скручивания, стремящихся нарушить перпендикулярность осей X и Y.

Вот, пожалуй, и все преимущества Но уже их достаточно для того, чтобы отказаться от стандартной кинематики. Тем более, что кинематика CoreXY теперь очень хорошо поддерживается в популярной прошивке Marlin. Как раз с весны по лето разработчики активно допиливали именно эту кинематику.

Посмотрим, что получится.

Обновление от 9.12.2015

Ну вот, работа над корпусом почти закончена. Пробные выпиливания на моем станке с ЧПУ выявили некоторые погрешности проектирования, которые тут же исправляю в файле проекта. Ни разу еще не делал конструкцию по чертежам. 3D принтер своими руками — это мой первый проект, в котором я применил сурьезный инженерский подход — сперва подумать, потом сделать. Обычно делаю все наоборот:)

Тем не менее, то, что у меня получается на данный момент мне и самому нравится. Оказывается, правильно спроектированный 3D принтер из фанеры может быть довольно прочным. Я даже начинаю проникаться уважением к такому материалу, как фанера. Надо будет попробовать сделать из нее ее что-нибудь.

Теперь возвращаясь к моему самодельному 3D принтеру из фанеры, хочу отметить невероятную компактность своей конструкции. По площади основания он получился точь в точь как мой настольный лазерный принтер! Для дома — самое то.

Однако я не забыл про возможности роста. Если внимательно посмотреть на фото 3D принтера, то видно, что верхушка у него съемная. Достаточно открутить несколько винтов и переставить печатающую часть на коробку повыше, и можно печатать высоченные вазы. Более подробно с конструкцией моего 3D принтера из фанеры можно ознакомиться в статье про .

Все, что остается на данный момент — это натянуть зубчатый ремень и установить винтовую передачу на ось Z. Ах, да! Еще экструдер

Обновление от 15.12.2015

Ура! Я сделал 3D принтер своими руками! Переходим теперь к .

  • Направляющие (полированные валы Ф12 мм) 1,5 м = 1 080 руб
  • Линейные подшипники LM12UU — 6 шт х 150 руб = 900 руб
  • Шаговые двигатели Nema 17 — 4шт х 750 руб = 3 000 руб
  • Ремень GT2 300 см по 300 руб/м = 900 руб
  • Шкивы 20 зубов 3 шт в наборе = 840 руб
  • Контроллер (Arduino Mega 2560 r3 + Ramps 1.4 с драйверами шаговиков) = 2 000 руб
  • Стекло с каптоном 200 х 200 мм = 230 руб
  • Нагреватель стола 220 V 200 x 200 мм = 1 000 руб
  • HotEnd E3D v5 с соплом 0,3 мм, фитингом и фторопластовой трубкой = 2 200 руб
  • Блок питания ATX 350 Вт = 650 руб
  • Лист фанеры 8 мм = 300 руб
  • Винты Ф3 х 25, гайки, шайбы = 400 руб

Итого: 13 500 руб

Все детали куплены в специализированных магазинах в Москве. Те, кто любит все заказывать в Китае, наверное, могли бы сэкономить еще больше денег.

(адаптер в комплекте).

ЗАКАЗ

Приобретать платы в оригинале мне показалось слишком дорого. Съэкономить на пайке много по подсчетам также не получится. Соответственно заказ сделал на e-bay. При этом прекрасно осознавал, что платы могут оказаться весьма посредственного качества. Рискнул! Три недели ожидания, и платы у меня в руках.

ТЕСТИРОВАНИЕ

Первым делом, по привычке, платы подверглись тщательному визуальному осмотру. Первая попалась в руки Arduino MEGA 2560 R3 ATmega2560. Она оказалась весьма приемлемого качества.
За ней — RAMPS 1.4. И тут огромное разочарование — сильно окислившиеся (даже проржавевшие) контакты силового разъема.

При высоких токах оставлять такое безобразие мне показалось неправильным!!! Пришлось аккуратно выпаять разъем. На фото он синего цвета. И запаять найденный в закромах подобный (на фото зеленый). Совет для тех, кому попадется эта засада — перед тем как выпаивать корпус разъема лучше «раскусить» бокорезами . Контактный площадки платы, да и проводники, выполнены достаточно хорошо. Плата успешно пережила «ремонт». Перед отмывкой еще раз просмотрел пайки. В результате обнаружил, что вокруг штыревых контактов большое количество шариков припоя. Замочил плату в спирте на 20 минут и хорошо промыл…


Затем попытался соединить силовую плату с контроллером. Вышло! Но с большим трудом. Во-первых ответные разъемы плохо совпадают:(. Во-вторых корпус разъема питания контроллера уперся в «ногу» разъема питания силовой платы (на фото справа) — пришлось скусить «ногу» бокорезами !


После установки силовой платы приступил к монтажу плат драйверов шаговых двигателей. Габаритные размеры этих плат оказались слишком большими и платы мешали друг другу!!! Пришлось поработать надфилем. Пока обтачивал контура, отвалились радиаторы:)… Либо мне так не везет, либо не понятно на что эти радиаторы установили! Пришлось приклеить их на место теплопроводящим клеем .


После «приятных мучений» с силовой платой в руках оказалась интерфейсная плата. А вот здесь обнаружился брак, который после включения питания мог привести к краху! Индикатор напаяли без установки стоек и посредством короткого разъема. В результате чего корпус ЖКИ панели замкнул контакты входящего разъема!!!


По хорошему, неплохо бы перепаять индикатор. Но из-за отсутствия времени на поиски высокого разъема PLS решил временно установить сложенный лист бумаги (на фото).
После того как подправил все косяки, подключился к USB порту — вспышки с хлопками не случилось! Значит пришло время заливать прошивку.
Остановился я на проекте Marlin . К моему восторгу исходники прекрасно закомментированы… Настройка индивидуальной прошивки осуществляется через включение/выключение нужных описаний в исходном коде. Настраиваем, компилируем, прошиваем, включаем.


Программа пошла. Но из-за отсутсвия датчика температуры остановилась на ошибке (снизу дисплея). Нашел подходящий термодатчик, установил. Контроллер полностью заработал — «Mendel is ready». Настало время подключить приводы и протестировать соединение с компьтером. Как подобрать шаговые приводы можно посмотреть . В моем проекте использованы, показанные на фото ниже.

Убедившись в рабтоспособности электронных узлов платы концентрируемся на сборке корпуса принтера…

РАЗМЕЩЕНИЕ ЭЛЕКТРОНИКИ

Корпус собран! Начнем раскидывать электронику… Если с корпусом все было достаточно прозрачно, то с размещением электронных узлов пришлось основательно поразмыслить. Просмотрев большое количество инструкций по сборке подобных принтеров, мне бросилось в глаза отсутствие информации в них о том каким образом размещать электронику и, что не менее важно, как тянуть провода. Бросать на самотек и вешать провода без разбору мне не захотелось. Свободное «болтание» проводов может привести к самым непредсказуемым последствиям.

БЛОК ПИТАНИЯ И ПЛАТЫ УПРАВЛЕНИЯ

Блок питания, как и в основной массе подобных устройст, расположил на правой боковой стойке каркаса. Отверстия для крепления сделал по-месту, обмеряя расположение крепежных отверстий БП. Здесь хочу отметить, что мне попался достаточно удачный БП. Мощность 250Вт в относительно маленьком корпусе.


Сборку из плат разместил на левой боковой стойке. На всех платах крепежные отверстия настолько тесно расположены, что проводники находятся даже под головкой винта. По этой причине пришлось нарезать стойки и шайбы для крепления плат из силиконового шланга. Для ускорения процесса использовал обычный разводной ключ. Зажимал шланг в нем, вытягивал на необходимую длину и резал концелярским ножом.


Для разметки пришлось разобрать сборку. Далее по плате ARDUINO разметил и просверлил крепежные отверстия. Затем установил плату ARDUINO на винты в центре платы (досупа в сборке к ним не будет).

После этого установил плату RAMPS и закрепил оставшиеся винты через силиконовые стойки и шайбы.


Для того, чтобы безопасно протянуть провода питания (12В) от БП, провод от мотора осей Y, Z и концевика оси Y к сборке плат, предварительно разместил на резьбовых шпильках обычные строительные кабельные каналы.



ДАТЧИКИ ПОЛОЖЕНИЯ НУЛЯ

Настало время устанавливать «нулевые» концевики. При выборе варианта крепления платы концевиков я остановился на детале . Конструкция мне показалась весьма удобной и проверять на моделях не стал. А на самом деле вышло, что подходит она исключительно для оси Z. Установил на ось Z. В качестве датчика концевика оси использовал полоску из нержавейки, приклееную клеевым пистолетом как показано на фото.

Далее пришлось долго поломать голову над тем как установить концевики на оси Y и X. C осью Y оказалось проще — удалось приспособить держатель, который установил на ось Z. Закрепил его стяжками к резьбовой шпильке. В качестве датчика также поставил полосу из тонкой нержавейки. В таком варианте регулировать положение срабатывания концевика не представляется возможным (определяется длиной самого датчика).


А вот с установкой концевика X пришлось повозиться! Для начала сделал из текстолита переходник.
Затем сделал крепежные отверстия М3 в ДЕРЖАТЕЛЕ ПРИВОДА, установил концевик и отрегулировал его положение. Датчик снова сделал из полоски нержавейки, которую прикрутил снизу ДЕРЖАТЕЛЯ ЭКСТРУДЕРА (допустимо приклеить клеевым пистолетом).

НАГРЕВАТЕЛЬ СТОЛА

Перед установкой платы нагревателя (далее просто нагреватель) я долго прикидывал как пустить кабельный канал. Изучив конструкцию аналогичных принтеров понял, что «жгут» проводов от стола везде выполнен достаточно неудачно по причине касания деталей каркаса. В своем варианте этот момент я исключил (будет видно на фотографиях ниже).
Первым делом усадил термоусадку на оба конца подготовленного кабельного канала. На мой взгляд термоусадка придает жесткость кабельному каналу. Один конец закрепил на держателе стола с помощью стяжек как показано на фото.


После получения платы нагревателя я не стал детально ее осматривать. А вот перед монтажем решил осмотреть с пристрастием качество монтажа проводов. Итогом осмотра стало решение перепаять провода — провода были с явными разрывами жил и плохо залужены… В ситуации, когда предполагается движение стола и как следствие возможные изгибы у места пайки, необходимо качественное соединение!

Отпаял провода, отрезал поврежденные хвосты и, хорошо прогрев, залудил. Прогреть необходимо для того, чтобы провод залудился не только на зачищенном участке, но и под оплеткой. Подпаял провода на место и хорошо смыл остатки флюса спиртом.
Далее перешел к монтажу датчика температуры стола. На данном этапе важно аккуратно подпаять провода (в моем случае это МГТФ) и отформовать выводы, не повредив корпуса. Датчик устанавливается в отверстии в центре нагревателя и крепится полосками каптонового скотча. На этом этапе необходимо проконтроллировать, чтобы датчик не выступал за уровень платы нагревателя и выводы были надежно закреплены скотчем без замыканий.

Затем пропустил провода от датчика температуры в установленный кабельный канал и установил плату нагревателя на место. Провода нагревателя оказалось удобнее завести в кабельный канал сбоку как показано на фото.


Настало время собирать в «кучу» провода, идущие от экструдера. Этот узел не вызвал особых сложностей. Единственное, что я изначально не протянул провода для вентилятора! Но с моим экструдером понадобятся аж два вентилятора. Об этом я расскажу в статье «РАБОТА НАД ОШИБКАМИ». Закрепить кабельный канал возможно очень удобно как показано на фотографиях. При креплении по предложенной схеме не потребуется сверлить дополнительных отверстий…

Кабельные каналы закрепил на левой стойке. На этом этапе потребуется повозиться с дрелью. Как все закреплено можно увидеть на фотографиях ниже.

На последней фотографии хорошо видно как расположен кабельный канал стола. Как я и говорил раньше, удалось разместить его таким образом, чтобы он не касался деталей принтера при движении стола. То же самое можно сказать и про оставшиеся кабельные каналы.

Все провода на месте — можно начинать их соединять с платой. Потребовалось немного терпения и внимания для того, чтобы все соединялось именно как указано на схеме выше! Единственный момент, который не совпадает со схемой — это использование оптических датчиков положения. Нужно учесть еще одну линию — питание датчика (на плате предусмотрен контакт на том же разъеме).
Все провода на месте — можно переходить к принтера.

НАБОР ДЛЯ СБОРКИ

Полный набор электроники доступен в интернет-магазине по ссылке http://www.zdvstore.ru/prusa-electronic/ .
В набор включена плата контроллера, содержащая прошивку в которой учтены все особенности, описанные в моих статьях. Установив этот набор электроники, Вы сразу запустите принтер…

КАЧЕСТВО ЗАПЧАСТЕЙ С ALIEXPRESS (ДОПОЛНЕНИЕ ОТ 01-04-2016)

После посещения моего интернет-магазина мне часто задают вопрос о «завышенной» стоимости электроники на его прилавке! Я готов ответить на этот вопрос.

При покупке электроники на первый свой принтер мне достались вполне себе неплохие экземпляры (за исключением силовой платы RAMPs:). Вторичная покупка небольшой партии комплектующих привела меня в ужас!!!

И вот уже больше года я пытался найти хорошего поставщика электроники в Китае. За адекватные деньги надлежащий товар мне так и не удалось отыскать.

Скажу честно, что только Arduino MEGA 2560 R3 ATmega2560 и нагреватель стола MK2B DUAL POWER приходят в надлежащем виде за редким исключением. С остальными платами ну просто БЕДА! Особенно это касается плат RAMPs v1.4 и драйверов шаговых двигателей DRV8825. В независимости от продавца поступают приблизительно такие изделия:

Самый распространенный косяк — это неотмытая плата с огромным количеством припоя, размазанного по паяльной маске;(. Следующая беда в том, что в последнее время стали ставить на платы разъемы с контактами стального цвета. Эти контакты не «хотят» даже лудиться! Не говорю о нормальной пайке контактов. Особенно это относится к драйверам шаговых двигателей. Дальше идут всяческие «приколы», начиная с перевернутых разъемов (на фото выше:), заканчивая неправильно запаянными потенциометрами на платах индикатора.

Одним словом, мне приходится достаточно долго вычищать припой, пропаивать разъемы, исправлять косяки и отмывать платы!

Надеюсь, что на вопрос я дал исчерпывающий ответ:)!?

ВЫПУСК ПЛАТ RAMPs (ДОПОЛНЕНИЕ ОТ 01-04-2016)

Поскольку времени на восстановление плат уходит безумно много, я принял решение изготавливать часть электроники в России. На первую пору (пока отыщу поставщиков) сами печатные платы будут из Китая, но с мая 2016 уже отечественные.

Первыми пойдут силовые платы RAMPs v1.4 в двух модификациях. Различие в установленных на входе питания предохранителях. На одной плате предусмотрены самовосстанавливающиеся, на другой — плавкие автомобильные.

Помимо этого уже закупил партию транзисторов с сопротивлением открытого канала в 5 раз меньше, чем у установленных на оригинальных платах, и мощностью рассеивания 300 Вт.

Также для тех, кто любит возиться с паяльником в мае 2016 будут доступны наборы для сборки силовых плат обоих модификаций:).

Следите за анонсами на сайте и интернет-магазине!!!

Очевидно, что чем выше кол-во в изготавливаемой партии, тем ниже себестоимость и, соответственно, конечная стоимость. По этой причине буду рад принять заказы на изготовление силовых плат RAMPs v1.4 от тех, кто реализует запчасти для 3D принтеров — звоните, пишите…

КАК УМИРАЕТ RAMPs С ALIEXPRESS (ДОПОЛНЕНИЕ ОТ 27-04-2016)

В начале статьи описано как я перепаивал бракованные силовые разъемы на плате RAMPs. Напомню, это были разъемы для подключения нагревательных элементов хотэдов и стола. Входной разъем питания мне показался вполне себе приличным:).

Прошло чуть больше года… И… В самый «подходящий» момент, во время печати срочного заказа, срабатывает температурная защита прошивки! Принтер останавливается на середине детали…

Детальный осмотр показал прогоревший разъем входного питания.

Несмотря на то, что на плате стоит 9-ти амперный предохраниель (должен быть 11-ти амперный), выгорел котакт разъема. Пришлось убить время на перепайку. На место выгоревшего разъема установил подобный от DEGSON и снова в «бой».

Желание иметь в своем хозяйстве 3D принтер встречается у многих, но возможность приобрести такой аппарат есть не у всех. Эта статья рассказывает о том, как сделать своими руками очень низкобюджетный принтер, что построенный в основном из переработанных электронных компонентов. В результате работы был построен мелко форматный принтер стоимостью меньше 100$.

Прежде всего, мы узнаем, как работает универсальная систему ЧПУ (сборка и калибровка подшипника, направляющих и пластикового волокна), а затем научимся управлять принтером с помощью инструкций g-кода . После этого добавим небольшой пластиковый экструдер , вставив параметры калибровки, регулятор мощности двигателя и несколько других операций, что приведут принтер к жизни. Следуя данной инструкции, вы получите небольшой «карманный принтер», что на 80% будет состоять из компонентов перерабатываемой электроники, которые придадут ему большой потенциал и помогут значительно снизить стоимость.
Эта статья поможет вам разобраться в более сложных проблемах связанных с утилизацией электронных устройств.

Шаг 1: Координатные оси X, Y и Z

Необходимые компоненты:

  • 2 стандартных CD/DVD привода от старого компьютера.
  • 1 Floppy дисковод.

Все эти компоненты можно приобрести на местных барахолках. Убедитесь в том, что моторы, которые получены от дисковода – шаговые , а не двигатели постоянного тока.

Шаг 2: Подготовка моторов

Компоненты:
3 шаговых двигателя от CD/DVD приводов;
1 NEMA 17 шаговый двигатель, что необходимо приобрести для проекта. Этот тип двигателя будет использован для пластикового экструдера, где необходимо больше мощности для перемещения пластикового волокна;
ЧПУ электроника: RAMPS или RepRap Gen6/7 . Это важно, чем будете пользоваться Sprinter/Marlin открытой прошивкой. В данном примере будем пользоваться электроникой RepRap Gen6, но вы можете выбрать другой вариант в зависимости от цены и доступности;
Блок питания;
Кабели, разъемы, термоусадочные трубки.
Первое что необходимо сделать, когда у вас появятся шаговые двигатели, это припаять к ним провода. В этом случае 4 провода должны быть на своих местах, в соответствии с последовательностью цветов (описание в паспорте двигателя).
Паспортные данные для CD/DVD шаговых моторов: http://robocup.idi.ntnu.no/wiki/images/c/c6/PL15S020.pdf
Паспортные данные для NEMA 17 шагового двигателя: http://www.pbclinear.com/Download/DataSheet/Stepper-Motor-Support-Document.pdf

Шаг 3: Подготовка блока питания

Следующий шаг заключается в подготовке блока питания, чтобы использовать его в проекте. Прежде всего, соединим два кабеля друг с другом (как показано на рисунке), это позволит включать блок. После этого выбираем один желтый (12 В) и один черный кабель (землю) для питания контроллера.

Шаг 4: Arduino IDE

Теперь необходимо проверить двигатели. Для этого скачиваем Arduino IDE (физическая вычислительная среда), что можно найти по адресу: http://arduino.cc/en/Main/Software.
Нужно загрузить и установить версию Arduino 23 .
После этого скачаем прошивку. В проекте выбор пал на Marlin , что уже настроен и может быть загружен по ссылке.
Marlin:
После того, как была установлена Arduino, подключим компьютер к ЧПУ контроллеру Ramps/Sanguino/Gen6-7 с помощью USB кабеля, выбираем соответствующий последующий порт под Arduino IDE => инструменты/ последовательной порт и находим тип контроллера под => инструментами/плата Ramps(Arduino Mega 2560) , Sanguinololu/Gen6(Sanguino W/ ATmega644P – Sanguino должен быть установлен внутри).
Основные параметры, параметры конфигураций находятся в файле «configuration.h »:
В среде Arduino открываем прошивку, загруженный файл и видим параметры конфигурации, прежде чем загрузить прошивку на наш контроллер.
1) #define MOTHERBOARD 3 значение, в соответствии с реальным оборудованием, мы используем (Ramps 1.3 or 1.4 = 33, Gen6 = 5, …);
2) Термистор 7 значение, RepRappro использует «горячее сопло» Honeywell 100k ;
3) PID это значение делает «горячее сопло» более стабильным с точки зрения температуры;
4) Шаги на единицу (Steps per unit ), это важный момент для настройки любого контроллера (шаг 9).

Шаг 5: Управление принтером с помощью программного обеспечения

Управление принтером осуществляется по средствам программного обеспечения: существуют различные программы, что находятся в свободном доступе, позволяют взаимодействовать и управлять принтером (Pronterface, Repetier, …), в проекте использовался Repetier Host , который вы можете скачать http://www.repetier.com/ . Простая установка и интеграция slicer. Slicer — это часть программного обеспечения, что генерирует последовательные секции объекта, что мы хотим напечатать. После генерации происходит соединение секций в слои и генерация g-кода для принтера. Slicer можно настроить с помощью таких параметров как:
высота секции;
скорость печати;
заполнение и т.д., что важны для качества печати.
Обычную конфигурацию slicer можно найти по следующим ссылкам:
Skeinforge конфигурация http://fabmetheus.crsndoo.com/wiki/index.php/Skeinforge
Slic3r конфигурация http://manual.slic3r.org/